Bayesian likelihood methods for estimating the end point of a distribution

We consider maximum likelihood methods for estimating the end point of a distribution. The likelihood function is modified by a prior distribution that is imposed on the location parameter. The prior is explicit and meaningful, and has a general form that adapts itself to different settings. Results on convergence rates and limiting distributions are given. In particular, it is shown that the limiting distribution is non-normal in non-regular cases. Parametric bootstrap techniques are suggested for quantifying the accuracy of the estimator. We illustrate performance by applying the method to multiparameter Weibull and gamma distributions. Copyright 2005 Royal Statistical Society.

[1]  Michael Woodroofe,et al.  Maximum Likelihood Estimation of Translation Parameter of Truncated Distribution II , 1974 .

[2]  Martin Pesendorfer,et al.  Estimation of a Dynamic Auction Game , 2001 .

[3]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[4]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[5]  Yuen Ren Chao,et al.  Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology , 1950 .

[6]  K. Hirano,et al.  Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support , 2002 .

[7]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[8]  M. Woodroofe Maximum Likelihood Estimation of a Translation Parameter of a Truncated Distribution , 1972 .

[9]  Victor Chernozhukov,et al.  Likelihood Estimation and Inference in a Class of Nonregular Econometric Models , 2003 .

[10]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[11]  Masafumi Akahira,et al.  Non-regular statistical estimation , 1995 .

[12]  Jeongwen Chiang,et al.  Are Sutton's Predictions Robust?: Empirical Insights into Advertising, R&D, and Concentration , 1996 .

[13]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[14]  Peter Hall,et al.  On the Extreme Terms of a Sample From the Domain of Attraction of a Stable Law , 1978 .

[15]  Michael A. Stephens,et al.  Estimation and Tests-of-Fit for the Three Parameter Weibull Distribution , 1994 .

[16]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[17]  Harry J. Paarsch,et al.  Piecewise Pseudo-maximum Likelihood Estimation in Empirical Models of Auctions , 1993 .

[18]  L. Lecam On the Assumptions Used to Prove Asymptotic Normality of Maximum Likelihood Estimates , 1970 .

[19]  Richard Breen,et al.  Regression Models: Censored, Sample Selected, or Truncated Data , 1996 .

[20]  I. Weissman,et al.  Maximum Likelihood Estimation of the Lower Tail of a Probability Distribution , 1985 .

[21]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[22]  George Kingsley Zipf,et al.  National unity and disunity : the nation as a bio-social organism , 1941 .

[23]  O. Kempthorne,et al.  Maximum Likelihood Estimation in the Three‐Parameter Lognormal Distribution , 1976 .

[24]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[25]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[26]  Sidney I. Resnick Point processes, regular variation and weak convergence , 1986 .

[27]  Russell C. H. Cheng,et al.  Corrected Maximum Likelihood in Non‐Regular Problems , 1987 .

[28]  J. S. Long,et al.  Regression Models for Categorical and Limited Dependent Variables , 1997 .

[29]  K. F. Turkman,et al.  The joint limiting distribution of sums and maxima of stationary sequences , 1991, Journal of Applied Probability.

[30]  P. Hall Representations and limit theorems for extreme value distributions , 1978, Journal of Applied Probability.

[31]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .