Latent Variable Selection for Multidimensional Item Response Theory Models via $$L_{1}$$L1 Regularization
暂无分享,去创建一个
Zhiliang Ying | Yunxiao Chen | Tao Xin | Jianan Sun | Jingchen Liu | Z. Ying | Yunxiao Chen | Jingchen Liu | Tao Xin | Jianan Sun
[1] A. Béguin,et al. MCMC estimation and some model-fit analysis of multidimensional IRT models , 2001 .
[2] Terry A. Ackerman. Unidimensional IRT Calibration of Compensatory and Noncompensatory Multidimensional Items , 1989 .
[3] Mark D. Reckase,et al. The Use of the General Rasch Model with Multidimensional Item Response Data. , 1982 .
[4] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[5] C. L. Mallows. Some comments on C_p , 1973 .
[6] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[7] Roderick P. McDonald,et al. Linear Versus Models in Item Response Theory , 1982 .
[8] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[9] Walter D. Way,et al. The Comparative Effects of Compensatory and Noncompensatory Two-Dimensional Data on Unidimensional IRT Estimates , 1988 .
[10] Li Cai,et al. HIGH-DIMENSIONAL EXPLORATORY ITEM FACTOR ANALYSIS BY A METROPOLIS–HASTINGS ROBBINS–MONRO ALGORITHM , 2010 .
[11] Colin Fraser,et al. NOHARM: Least Squares Item Factor Analysis. , 1988, Multivariate behavioral research.
[12] Daniel M. Bolt,et al. Estimation of Compensatory and Noncompensatory Multidimensional Item Response Models Using Markov Chain Monte Carlo , 2003 .
[13] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[14] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[15] K. Jöreskog. A general approach to confirmatory maximum likelihood factor analysis , 1969 .
[16] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[17] S. Embretson. A general latent trait model for response processes , 1984 .
[18] Robert A. Forsyth,et al. An Examination of the Characteristics of Unidimensional IRT Parameter Estimates Derived From Two-Dimensional Data , 1985 .
[19] R. Mckinley. Confirmatory Analysis of Test Structure Using Multidimensional Item Response Theory. , 1989 .
[20] Alberto Maydeu-Olivares,et al. Item diagnostics in multivariate discrete data. , 2015, Psychological methods.
[21] Terry A. Ackerman. Using multidimensional item response theory to understand what items and tests are measuring , 1994 .
[22] C. Mallows. Some Comments on Cp , 2000, Technometrics.
[23] H. Akaike. A new look at the statistical model identification , 1974 .
[24] Roy Levy,et al. An Overview of Software for Conducting Dimensionality Assessment in Multidimensional Models , 2012 .
[25] Sybil B. G. Eysenck,et al. Re-introduction to cross-cultural studies of the EPQ , 2013 .
[26] M. Reckase,et al. Development and Application of a Multivariate Logistic Latent Trait Model , 1972 .
[27] M. Reckase. The Past and Future of Multidimensional Item Response Theory , 1997 .
[28] R. P. McDonald,et al. Nonlinear factor analysis. , 1967 .
[29] M. R. Novick,et al. Statistical Theories of Mental Test Scores. , 1971 .
[30] S. Embretson,et al. Item response theory for psychologists , 2000 .
[31] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[32] M. Reckase. Multidimensional Item Response Theory , 2009 .
[33] E. Muraki,et al. Full-Information Item Factor Analysis , 1988 .
[34] Li Cai. High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm , 2010 .