Solar-powered electrochemical energy storage: an alternative to solar fuels

Because of the intermittent nature of solar radiation, being able to simultaneously convert and store solar energy is a significant advance for efficiently harnessing solar energy. Solar fuels have already been recognized as a promising method towards this goal and have attracted tremendous research interest recently. Alternatively, this goal can also be achieved by using the solar-powered electrochemical energy storage (SPEES) strategy, which integrates a photoelectrochemical cell and an electrochemical cell into a single device. The integrated device is able to harvest solar energy and store it in situ within the device via a photocharging process and also distribute the energy as electric power when needed. This essay reviews the past SPEES research and analyzes its future prospects with a special emphasis on chemical design and material choices. We hope that the article will help draw more research attention to this field and stimulate additional exciting investigations toward more efficient solar energy utilization.

[1]  G. Shen,et al.  Integrated Photo‐supercapacitor Based on Bi‐polar TiO2 Nanotube Arrays with Selective One‐Side Plasma‐Assisted Hydrogenation , 2014 .

[2]  Peter Lindblad,et al.  Biomimetic and microbial approaches to solar fuel generation. , 2009, Accounts of chemical research.

[3]  A. Takshi,et al.  Photoactive supercapacitors for solar energy harvesting and storage , 2015 .

[4]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[5]  D. Cahen,et al.  Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes , 1976, Nature.

[6]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[7]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[8]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[9]  Huisheng Peng Fiber-Shaped Energy Harvesting and Storage Devices , 2015 .

[10]  Zhongjie Huang,et al.  Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy. , 2015, Journal of the American Chemical Society.

[11]  Erik M. J. Johansson,et al.  Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor , 2013 .

[12]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[13]  Y. Sakurai,et al.  A Photorechargeable Metal Hydride/Air Battery , 2001 .

[14]  Y. Yonezawa,et al.  Energy conversion and storage in solid-state photogalvanic cells. , 1981 .

[15]  D. Cahen,et al.  Photoelectrochemical Energy Conversion and Storage The Polycrystalline Cell with Different Storage Modes , 1977 .

[16]  G. R. Li,et al.  Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes , 2013 .

[17]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes , 2007 .

[18]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[19]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[20]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[21]  R. Slade,et al.  Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells , 2005 .

[22]  S. Nair,et al.  Design and development of an integrated device consisting of an independent solar cell with electrical storage capacity , 2013 .

[23]  S. Kondo,et al.  Photo-rechargeable solid state battery , 1990 .

[24]  A. Sammells,et al.  n ‐ MoSe2, Photoelectrochemical Halogen Storage Cell , 1982 .

[25]  M. Umeno,et al.  Light invariant, efficient, multiple band gap AlGaAs/Si/metal hydride solar cell , 1999 .

[26]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[27]  O. Bohnké,et al.  Electrochemical lithium incorporation into WO3 and MoO3 thin films , 1982 .

[28]  Minbaek Lee,et al.  Single‐Fiber‐Based Hybridization of Energy Converters and Storage Units Using Graphene as Electrodes , 2011, Advanced materials.

[29]  Fuqiang Liu,et al.  All-vanadium redox photoelectrochemical cell: An approach to store solar energy , 2014 .

[30]  Li Li,et al.  An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film , 2013 .

[31]  Anders Hagfeldt,et al.  Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells , 1994 .

[32]  Jinpeng Han,et al.  Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery , 2013 .

[33]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[34]  T. Nomiyama,et al.  Photo-rechargeable battery with TiO2/carbon fiber electrodes prepared by laser deposition , 2000 .

[35]  Xinyu Xue,et al.  An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. , 2012, Nano letters.

[36]  S. Uchida,et al.  Energy-Storable Dye-Sensitized Solar Cells with Tungsten Oxide Charge-Storage Electrode , 2009 .

[37]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[38]  G. R. Li,et al.  Electroactive Organic Compounds as Anode-Active Materials for Solar Rechargeable Redox Flow Battery in Dual-Phase Electrolytes , 2014 .

[39]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[40]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[41]  Antonino S. Aricò,et al.  DMFCs: From Fundamental Aspects to Technology Development , 2001 .

[42]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[43]  Guihua Yu,et al.  A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. , 2014, Nano letters.

[44]  Yuh‐Lang Lee,et al.  Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells , 2008 .

[45]  Stenbjörn Styring,et al.  Artificial photosynthesis for solar fuels. , 2012, Faraday discussions.

[46]  H. Tributsch,et al.  Photon energy conversion and storage with a light-driven insertion reaction , 1987 .

[47]  Reshef Tenne,et al.  A light-variation insensitive high efficiency solar cell , 1987, Nature.

[48]  Hiroshi Segawa,et al.  Energy-storable dye-sensitized solar cell with a polypyrrole electrode. , 2004, Chemical communications.

[49]  Hongrui Jiang,et al.  Dye‐Sensitized Solar Cell with Energy Storage Function through PVDF/ZnO Nanocomposite Counter Electrode , 2013, Advanced materials.

[50]  Haruhiko Ohya,et al.  Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery , 1996 .

[51]  S. Uchida,et al.  Energy-storable Dye-sensitized Solar Cells with Interdigitated Nafion/Polypyrrole–Pt Comb-like Electrodes , 2010 .

[52]  Hongrui Jiang,et al.  Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects , 2011 .

[53]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[54]  Hye Ryung Byon,et al.  High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode , 2013, Nature Communications.

[55]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[56]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[57]  M. Sharon,et al.  A rechargeable photo-electrochemical solar cell (saur viddyut kosh—III) , 1982 .

[58]  Yasushi Katayama,et al.  Investigation on V(IV)/V(V) species in a vanadium redox flow battery , 2004 .

[59]  Hao Sun,et al.  A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor , 2014 .

[60]  Matthew M. Mench,et al.  In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries , 2013 .

[61]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[62]  Kuo-Chuan Ho,et al.  A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films , 2010 .

[63]  Subodh G. Mhaisalkar,et al.  Printable photo-supercapacitor using single-walled carbon nanotubes , 2011 .

[64]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[65]  An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C , 1980 .

[66]  Zhenbo Cai,et al.  An Integrated "energy wire" for both photoelectric conversion and energy storage. , 2012, Angewandte Chemie.

[67]  Xueping Gao,et al.  A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. , 2013, ChemSusChem.

[68]  Maria Skyllas-Kazacos,et al.  Characteristics of a new all-vanadium redox flow battery , 1988 .

[69]  B. Keita,et al.  Electrochemistry and photoelectrochemistry of sodium 9,10-anthraquinone-2,6-disulfonate in aqueous media: Application to rechargeable solar cells and to the synthesis of hydrogen peroxide , 1984 .

[70]  A. Heller,et al.  Semiconductor interface characterization in photoelectrochemical solar cells: the p-InP (111)A face , 1982 .

[71]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[72]  Tsutomu Miyasaka,et al.  A high-voltage dye-sensitized photocapacitor of a three-electrode system. , 2005, Chemical communications.

[73]  H. Minoura,et al.  Photochargeable multilayer membrane device composed of CdS film and prussian blue battery , 1990 .

[74]  Yi Shen,et al.  Reversible Electron Storage in an All-Vanadium Photoelectrochemical Storage Cell: Synergy between Vanadium Redox and Hybrid Photocatalyst , 2015 .

[75]  G. Pan,et al.  TiN Nanotube Arrays as Electrocatalytic Electrode for Solar Storable Rechargeable Battery , 2012 .

[76]  S. Licht,et al.  Thin Film Cadmium Chalcogenide/Aqueous Polysulfide Photoelectrochemical Solar Cells with In‐Situ Tin Storage , 1987 .

[77]  Y. Yonezawa,et al.  A photochemical storage battery with an n-GaP photoelectrode. , 1983 .

[78]  Assaf Y Anderson,et al.  Water‐Based Electrolytes for Dye‐Sensitized Solar Cells , 2010, Advanced materials.

[79]  H. X. Yang,et al.  A solar rechargeable battery based on polymeric charge storage electrodes , 2012 .

[80]  J. K. Hurst In Pursuit of Water Oxidation Catalysts for Solar Fuel Production , 2010, Science.

[81]  G. W. Murphy Model systems in photoelectrochemical energy conversion , 1978 .

[82]  Hye Ryung Byon,et al.  High‐Performance Lithium‐Iodine Flow Battery , 2013 .

[83]  Kai Zhu,et al.  Reducing the charging voltage of a Li–O2 battery to 1.9 V by incorporating a photocatalyst , 2015 .

[84]  Dong Liu,et al.  Effect of vanadium redox species on photoelectrochemical behavior of TiO2 and TiO2/WO3 photo-electrodes , 2012 .

[85]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[86]  Federico Bella,et al.  Aqueous dye-sensitized solar cells. , 2015, Chemical Society reviews.

[87]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[88]  A. Sammells,et al.  Photoelectrochemical systems with energy storage , 1980 .

[89]  Yi Shen,et al.  Efficient Solar Energy Storage Using A TiO2/WO3 Tandem Photoelectrode in An All-vanadium Photoelectrochemical Cell , 2014 .

[90]  A. Morales-Acevedo Comment on “The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy” [Appl. Phys. Lett. 85, 3932 (2004)] , 2005 .

[91]  S. Licht Energy Technology Division Research Award Address: Photoelectrochemical Storage of Solar Energy , 2007, ECS Transactions.

[92]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[93]  Baoquan Sun,et al.  Towards photo-rechargeable textiles integrating power conversion and energy storage functions: can we kill two birds with one stone? , 2013, ChemSusChem.

[94]  H. Gerritsen,et al.  A Photoelectrochemical Storage Cell with n ‐ CdSe and p ‐ CdTe Electrodes , 1984 .

[95]  Masafumi Yamaguchi,et al.  III–V compound multi-junction solar cells: present and future , 2003 .

[96]  Xin Cai,et al.  Integrated power fiber for energy conversion and storage , 2013 .

[97]  Lu Ma,et al.  Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging , 2014, Nature Communications.

[98]  A. Heller,et al.  11.5% solar conversion efficiency in the photocathodically protected p‐InP/V3+‐V2+‐HCI/C semiconductor liquid junction cell , 1981 .

[99]  W. J. Albery,et al.  Development of photogalvanic cells for solar energy conservation , 1982 .

[100]  B. Orel,et al.  New photoelectrochromic device , 2001 .

[101]  M. Tomkiewicz,et al.  Transport Properties of Nafion Membranes for Use in Three‐Electrode Photoelectrochemical Storage Cells , 1982 .

[102]  Hanlin Luo,et al.  Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels: let the molecules do the work , 2013 .

[103]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[104]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[105]  Heng Li,et al.  An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system , 2015 .

[106]  Michael Graetzel,et al.  A power pack based on organometallic perovskite solar cell and supercapacitor. , 2015, ACS nano.

[107]  J. Barber,et al.  Recent advances in hybrid photocatalysts for solar fuel production , 2012 .

[108]  T. Miyasaka,et al.  Light Energy Conversion and Storage with Soft Carbonaceous Materials that Solidify Mesoscopic Electrochemical Interfaces , 2007 .

[109]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[110]  S. Licht A description of energy conversion in photoelectrochemical solar cells , 1987, Nature.

[111]  Ch. Fabjan,et al.  Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems , 2004 .

[112]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[113]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[114]  Kuo-Chuan Ho,et al.  Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods , 2010 .

[115]  Stuart Licht,et al.  Encyclopedia of Electrochemistry, Vol. 6: Semiconductor electrodes and Photoelectrochemistry , 2002 .

[116]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[117]  B. O'Regan,et al.  Managing wetting behavior and collection efficiency in photoelectrochemical devices based on water electrolytes; improvement in efficiency of water/iodide dye sensitised cells to 4% , 2012 .

[118]  S. R. Jawalekar,et al.  Saur Viddyut Kosh. IV - Study of a rechargeable solar battery with n-Pb3O4 electrodes , 1984 .

[119]  Tsutomu Miyasaka,et al.  The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy , 2004 .

[120]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[121]  Andrea Listorti,et al.  Artificial photosynthesis: Solar to fuel. , 2009, Nature materials.

[122]  Yiying Wu,et al.  Photoelectrochemical study of the band structure of Zn(2)SnO(4) prepared by the hydrothermal method. , 2009, Journal of the American Chemical Society.

[123]  B. Orel,et al.  Photovoltaically Self-Charging Battery , 2002 .

[124]  Adam P. Cohn,et al.  Direct integration of a supercapacitor into the backside of a silicon photovoltaic device , 2014 .

[125]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[126]  Huisheng Peng,et al.  Integrated Polymer Solar Cell and Electrochemical Supercapacitor in a Flexible and Stable Fiber Format , 2014, Advanced materials.