How many zeros of a random sparse polynomial are real?
暂无分享,去创建一个
Himanshu Shukla | Gorav Jindal | Anurag Pandey | Charilaos Zisopoulos | Gorav Jindal | Himanshu Shukla | Anurag Pandey | Charilaos Zisopoulos
[1] Frederic Bihan amd Frank Sottile. NEW FEWNOMIAL UPPER BOUNDS FROM GALE DUAL POLYNOMIAL SYSTEMS , 2006 .
[2] P. Koiran,et al. A τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-Conjecture for Newton Polygons , 2013, Foundations of Computational Mathematics.
[3] Michael Sagraloff,et al. A near-optimal algorithm for computing real roots of sparse polynomials , 2014, ISSAC.
[4] K. Farahmand. On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .
[5] J. Littlewood,et al. On the number of real roots of a random algebraic equation. II , 1939 .
[6] Peter Burgisser,et al. On the Number of Real Zeros of Random Fewnomials , 2018, SIAM J. Appl. Algebra Geom..
[7] List Price,et al. Real solutions to equations from geometry , 2013 .
[8] Peter Bürgisser. On Defining Integers And Proving Arithmetic Circuit Lower Bounds , 2009, computational complexity.
[9] Ramprasad Saptharishi,et al. Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity , 2016, Computational Complexity Conference.
[10] Pascal Koiran,et al. A Wronskian approach to the real τ-conjecture , 2012, J. Symb. Comput..
[11] The average number of real zeros of a random polynomial , 1969 .
[12] H. Lenstra. Finding small degree factors of lacunary polynomials , 1999 .
[13] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[14] Alan Edelman,et al. How many zeros of a random polynomial are real , 1995 .
[15] M. Shub,et al. On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .
[16] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[17] J. M. Rojas,et al. On the Average Number of Real Roots of Certain Random Sparse Polynomial Systems , 1996 .
[18] Pascal Koiran,et al. Shallow circuits with high-powered inputs , 2010, ICS.
[19] T. Erdélyi. Extensions of the Bloch–Pólya theorem on the number of real zeros of polynomials , 2008 .
[20] Arno Eigenwillig,et al. Real root isolation for exact and approximate polynomials using Descartes' rule of signs , 2008 .
[21] Felipe Cucker,et al. A Polynomial Time Algorithm for Diophantine Equations in One Variable , 1999, J. Symb. Comput..
[22] Stéphan Thomassé,et al. A tau-conjecture for Newton polygons , 2013, ArXiv.
[23] Amir Yehudayoff,et al. Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..
[24] Pavel Hrubes. On the Real τ-Conjecture and the Distribution of Complex Roots , 2013, Theory Comput..
[25] Irénée Briquel,et al. The real tau-conjecture is true on average , 2020, Random Struct. Algorithms.
[26] Gregorio Malajovich,et al. High probability analysis of the condition number of sparse polynomial systems , 2004, Theor. Comput. Sci..
[27] Kurt Mehlhorn,et al. Computing real roots of real polynomials , 2013, J. Symb. Comput..
[28] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .