Heat transport through propagon-phonon interaction in epitaxial amorphous-crystalline multilayers

[1]  T. Ishibe,et al.  Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity. , 2021, Nanoscale.

[2]  T. Ishibe,et al.  An advanced 2ω method enabling thermal conductivity measurement for various sample thicknesses: From thin films to bulk materials , 2020 .

[3]  T. Ishibe,et al.  Low thermal conductivity in single crystalline epitaxial germanane films , 2020, Applied Physics Express.

[4]  Davide Beretta,et al.  Thermoelectrics: From history, a window to the future , 2019, Materials Science and Engineering: R: Reports.

[5]  Matthew D. Green,et al.  Oxide‐Mediated Formation of Chemically Stable Tungsten–Liquid Metal Mixtures for Enhanced Thermal Interfaces , 2019, Advanced materials.

[6]  T. Yagi,et al.  Thermal conductivity of hetero-epitaxial ZnO thin films on c- and r-plane sapphire substrates: Thickness and grain size effect , 2019, Journal of Applied Physics.

[7]  Y. Kamakura,et al.  Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface. , 2018, ACS applied materials & interfaces.

[8]  Pinshane Y. Huang,et al.  Unusual high thermal conductivity in boron arsenide bulk crystals , 2018, Science.

[9]  Patrick E. Hopkins,et al.  Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon , 2018 .

[10]  J. Shiomi,et al.  Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure. , 2018, Physical review letters.

[11]  Y. Nakamura Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity , 2018, Science and technology of advanced materials.

[12]  A. Henry,et al.  Phonon transport at interfaces between different phases of silicon and germanium , 2017 .

[13]  Renkun Chen,et al.  Thermal transport in amorphous materials: a review , 2016 .

[14]  A. Ishida,et al.  Amorphous/epitaxial superlattice for thermoelectric application , 2016 .

[15]  L. Colombo,et al.  Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices , 2016 .

[16]  G. P. Srivastava,et al.  Size and dimensionality dependent phonon conductivity in nanocomposites , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  B. Beake,et al.  Crack Resistance in Ceramics – From Thin Films to Bulk Materials , 2016 .

[18]  Robert F. Davis,et al.  Thermal interface conductance across metal alloy-dielectric interfaces , 2016 .

[19]  S. Takeuchi,et al.  Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials , 2015, Scientific Reports.

[20]  M. Nomura,et al.  Heat conduction tuning by wave nature of phonons , 2015, Science Advances.

[21]  Martin Maldovan,et al.  Phonon wave interference and thermal bandgap materials. , 2015, Nature materials.

[22]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[23]  H. Matsui,et al.  Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material , 2015 .

[24]  Thomas L. Bougher,et al.  High thermal conductivity of chain-oriented amorphous polythiophene. , 2014, Nature nanotechnology.

[25]  A. Minnich,et al.  Importance of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon–germanium thermoelectrics , 2014, 1404.7847.

[26]  T. Isotalo,et al.  Engineering thermal conductance using a two-dimensional phononic crystal , 2014, Nature Communications.

[27]  D. Muller,et al.  Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.

[28]  R. Fallica,et al.  Effect of nitrogen doping on the thermal conductivity of GeTe thin films , 2013 .

[29]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[30]  Peixuan Chen,et al.  Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. , 2013, Physical review letters.

[31]  H. Kosina,et al.  Optimizing thermoelectric power factor by means of a potential barrier , 2013, 1307.8156.

[32]  G. J. Snyder,et al.  High Thermoelectric Efficiency of n‐type PbS , 2013 .

[33]  C. Dames,et al.  Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures , 2013 .

[34]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[35]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[36]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[37]  Yoshihisa Tanaka,et al.  Thermal conductivity of ZnO thin film produced by reactive sputtering , 2012 .

[38]  Leonid V. Zhigilei,et al.  Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces , 2012 .

[39]  R. Zorn The boson peak demystified , 2011 .

[40]  C. Dames,et al.  Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.

[41]  J. Duda,et al.  Assessment and prediction of thermal transport at solid-self-assembled monolayer junctions. , 2011, The Journal of chemical physics.

[42]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[43]  P. McIntyre,et al.  Thermal Properties of Ultrathin Hafnium Oxide Gate Dielectric Films , 2009, IEEE Electron Device Letters.

[44]  Alan J. H. McGaughey,et al.  Effect of interfacial species mixing on phonon transport in semiconductor superlattices , 2009 .

[45]  Hangfeng Ji,et al.  Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices , 2007, IEEE Transactions on Electron Devices.

[46]  A. Majumdar,et al.  Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials , 2007, IEEE Transactions on Components and Packaging Technologies.

[47]  A. Zettl,et al.  Solid-State Thermal Rectifier , 2006, Science.

[48]  D. Cahill,et al.  Thermal conductance of interfaces between highly dissimilar materials , 2006 .

[49]  Rama Venkatasubramanian,et al.  Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity , 2005 .

[50]  I. Tanaka,et al.  Theoretical Study on the Chemistry of Intergranular Glassy Film in Si3N4–SiO2 Ceramics , 2004 .

[51]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[52]  Paul S. Ho,et al.  Thermal conductivity and interfacial thermal resistance of polymeric low k films , 2001 .

[53]  P. B. Allen,et al.  Diffusons, Locons, Propagons: Character of Atomic Vibrations in Amorphous Si , 1999, cond-mat/9907132.

[54]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[57]  Kenneth E. Goodson,et al.  Experimental investigation of thermal conduction normal to diamond‐silicon boundaries , 1995 .

[58]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[59]  Robert C. Wolpert,et al.  A Review of the , 1985 .