A Supervised Patch-Based Approach for Human Brain Labeling

We propose in this work a patch-based image labeling method relying on a label propagation framework. Based on image intensity similarities between the input image and an anatomy textbook, an original strategy which does not require any nonrigid registration is presented. Following recent developments in nonlocal image denoising, the similarity between images is represented by a weighted graph computed from an intensity-based distance between patches. Experiments on simulated and in vivo magnetic resonance images show that the proposed method is very successful in providing automated human brain labeling.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[3]  Carlos Ortiz-de-Solorzano,et al.  Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data , 2009, IEEE Transactions on Medical Imaging.

[4]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[5]  Mert R. Sabuncu,et al.  A Generative Model for Image Segmentation Based on Label Fusion , 2010, IEEE Transactions on Medical Imaging.

[6]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[7]  Max A. Viergever,et al.  Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) , 2010, IEEE Transactions on Medical Imaging.

[8]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[9]  Cameron S. Carter,et al.  Optimum template selection for atlas-based segmentation , 2007, NeuroImage.

[10]  Torsten Rohlfing,et al.  Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation , 2004, IEEE Transactions on Medical Imaging.

[11]  Michael Weiner,et al.  Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI , 2010, NeuroImage.

[12]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[13]  D. Louis Collins,et al.  A new improved version of the realistic digital brain phantom , 2006, NeuroImage.

[14]  François Rousseau,et al.  A non-local approach for image super-resolution using intermodality priors , 2010, Medical Image Anal..

[15]  Michaël Sdika,et al.  Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote , 2010, Medical Image Anal..

[16]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[17]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[18]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[19]  Arno Klein,et al.  Mindboggle: a scatterbrained approach to automate brain labeling , 2005, NeuroImage.

[20]  D. Louis Collins,et al.  Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion , 2010, NeuroImage.

[21]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[23]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[24]  Max A. Viergever,et al.  Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus , 2010, Medical Image Anal..

[25]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[27]  Max A. Viergever,et al.  Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans , 2009, IEEE Transactions on Medical Imaging.

[28]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[29]  Moo K. Chung,et al.  Robust Atlas-Based Brain Segmentation Using Multi-structure Confidence-Weighted Registration , 2009, MICCAI.

[30]  Ronen Basri,et al.  Prior Knowledge Driven Multiscale Segmentation of Brain MRI , 2007, MICCAI.

[31]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[32]  J C Mazziotta,et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward‐transform method , 1997, Human brain mapping.

[33]  Snehashis Roy,et al.  MR contrast synthesis for lesion segmentation , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[34]  Stanley Osher,et al.  Deblurring and Denoising of Images by Nonlocal Functionals , 2005, Multiscale Model. Simul..

[35]  Nicolas Cherbuin,et al.  Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation , 2011, NeuroImage.

[36]  Juha Koikkalainen,et al.  Fast and robust multi-atlas segmentation of brain magnetic resonance images , 2010, NeuroImage.

[37]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[38]  Jaakko Astola,et al.  From Local Kernel to Nonlocal Multiple-Model Image Denoising , 2009, International Journal of Computer Vision.

[39]  D. Louis Collins,et al.  Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation , 2011, NeuroImage.