铲式逆冲断层的地貌约束:以东天山尤路都斯盆地巴音背斜构造为例

[1]  Zhiyong Zhang,et al.  中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程:新疆库车河剖面的低温热年代学证据 , 2022, Earth Science-Journal of China University of Geosciences.

[2]  Yingying Chen,et al.  东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析 , 2022, Earth Science-Journal of China University of Geosciences.

[3]  Weitao Wang,et al.  Late Quaternary Kinematics and Deformation Rate of the Huoyanshan Structure Derived From Deformed River Terraces in the South Piedmont of the Eastern Chinese Tian Shan , 2021, Frontiers in Earth Science.

[4]  F. Huang,et al.  Effects of Erosion and Deposition on Constraining Vertical Slip Rates of Thrust Faults: A Case Study of the Minle–Damaying Fault in the North Qilian Shan, NE Tibetan Plateau , 2021, Frontiers in Earth Science.

[5]  B. Pan,et al.  Using fluvial terraces as distributed deformation offset markers: Implications for deformation kinematics of the North Qilian Shan Fault , 2021 .

[6]  J. Spencer,et al.  Rate of active shortening across the southern thrust front of the Greater Caucasus in western Georgia from kinematic modeling of folded river terraces above a listric thrust , 2020 .

[7]  Z. Ren,et al.  Active Thrusting in an Intermontane Basin: The Kumysh Fault, Eastern Tian Shan , 2020, Tectonics.

[8]  Youli Li,et al.  Deducing Crustal‐Scale Reverse‐Fault Geometry and Slip Distribution From Folded River Terraces, Qilian Shan, China , 2020, Tectonics.

[9]  Youli Li,et al.  Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland , 2019, Earth-Science Reviews.

[10]  J. Avouac,et al.  Denudation outpaced by crustal thickening in the eastern Tianshan , 2017 .

[11]  Yidong Lou,et al.  Crustal Deformation in the India‐Eurasia Collision Zone From 25 Years of GPS Measurements , 2017 .

[12]  Jianbo Chen,et al.  Late Quaternary tectonic activity and crustal shortening rate of the Bogda mountain area, eastern Tian Shan, China , 2016 .

[13]  Xiaoping Yang,et al.  Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China , 2015 .

[14]  N. Cardozo,et al.  Kinematic modeling of folding above listric propagating thrusts , 2014 .

[15]  N. Cardozo,et al.  Determining the uniqueness of best-fit trishear models , 2011 .

[16]  S. Dominguez,et al.  Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation , 2010 .

[17]  Jie Li,et al.  GPS velocity field for the Tien Shan and surrounding regions , 2010 .

[18]  S. Read,et al.  Along‐strike growth of the Ostler fault, New Zealand: Consequences for drainage deflection above active thrusts , 2010 .

[19]  J. Avouac,et al.  Miocene to present kinematics of fault-bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data , 2008 .

[20]  I. Stewart,et al.  Normal fault zone evolution and fault scarp degradation in the Aegean region , 2007 .

[21]  S. Read,et al.  Geomorphic constraints on listric thrust faulting: Implications for active deformation in the Mackenzie Basin, South Island, New Zealand , 2007 .

[22]  Jie Chen,et al.  Kinematic models of fluvial terraces over active detachment folds : Constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan , 2006 .

[23]  K. Davis,et al.  Thrust-fault growth and segment linkage in the active Ostler fault zone, New Zealand , 2005 .

[24]  P. Molnar,et al.  Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia , 2002 .

[25]  Jérôme Lavé,et al.  Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal , 2000 .

[26]  Bertrand Meyer,et al.  Growth folding and active thrusting in the Montello region, Veneto, northern Italy , 2000 .

[27]  Richard W. Allmendinger,et al.  Inverse and forward numerical modeling of trishear fault‐propagation folds , 1998 .