Ocean Mover's Distance: Using Optimal Transport for Analyzing Oceanographic Data

Modern ocean datasets are large, multi-dimensional, and inherently spatiotemporal. A common oceanographic analysis task is the comparison of such datasets along one or several dimensions of latitude, longitude, depth, time as well as across different data modalities. Here, we show that the Wasserstein distance, also known as earth mover’s distance, provides a promising optimal transport metric for quantifying differences in ocean spatiotemporal data. The Wasserstein distance complements commonly used point-wise difference methods such as, e.g., the root mean squared error, by quantifying deviations in terms of apparent displacements (in distance units of space or time) rather than magnitudes of a measured quantity. Using largescale gridded remote sensing and ocean simulation data of Chlorophyll concentration, a proxy for phytoplankton biomass, in the North Pacific, we show that the Wasserstein distance enables meaningful low-dimensional embeddings of marine seasonal cycles, provides oceanographically relevant summaries of Chlorophyll depth profiles and captures hitherto overlooked trends in the temporal variability of Chlorophyll in a warming climate. We also illustrate how the optimal transport vectors underlying the Wasserstein distance calculation can serve as a novel interpretable visual aid in other exploratory ocean data analysis tasks, e.g., in tracking ocean province boundaries across space and time. ∗Corresponding author: sangwonh@usc.edu Subjects: Climatology, Oceanography

[1]  Baylor Fox-Kemper,et al.  Estimates of Ocean Macroturbulence: Structure Function and Spectral Slope from Argo Profiling Floats , 2015 .

[2]  John J. Cullen,et al.  The deep chlorophyll maximum comparing vertical profiles of chlorophyll a , 1982 .

[3]  Hernan G. Arango,et al.  The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part II – Performance and application to the California Current System , 2011 .

[4]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[5]  I. Hense,et al.  Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions – A theoretical investigation , 2007 .

[6]  M. Kavanaugh,et al.  Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology , 2014 .

[7]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[8]  Stephanie Dutkiewicz,et al.  Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces , 2020, Science Advances.

[9]  B. Hodges,et al.  Simple models of steady deep maxima in chlorophyll and biomass , 2004 .

[10]  David M. Karl,et al.  The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation , 1996 .

[11]  P. Boyd,et al.  Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean , 2020, Global change biology.

[12]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[13]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[14]  R. Ponte,et al.  The partition of regional sea level variability , 2015 .

[15]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Richard J. Geider,et al.  A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature , 1998 .

[17]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[18]  Watson W. Gregg,et al.  Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model , 2015 .

[19]  David M. Karl,et al.  Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum , 2006, Nature.

[20]  J. Polovina,et al.  Sensors detect biological change in mid‐latitude North Pacific , 2000 .

[21]  Timothy S. Moore,et al.  A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product , 2009 .

[22]  D. Karl,et al.  Microbial oceanography and the Hawaii Ocean Time-series programme , 2014, Nature Reviews Microbiology.

[23]  K. Speer,et al.  Global Distribution and Formation of Mode Waters , 2013 .

[24]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[25]  G. C. Anderson SUBSURFACE CHLOROPHYLL MAXIMUM IN THE NORTHEAST PACIFIC OCEAN1 , 1969 .

[26]  Shubha Sathyendranath,et al.  An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications , 2017 .

[27]  C. Wunsch,et al.  Estimated Global Hydrographic Variability , 2007 .

[28]  Matthew J. Oliver,et al.  Objective global ocean biogeographic provinces , 2008 .

[29]  Xin‐Zhong Liang,et al.  On the observability of turbulent transport rates by Argo: supporting evidence from an inversion experiment , 2015 .

[30]  Richard C. Dugdale,et al.  NUTRIENT LIMITATION IN THE SEA: DYNAMICS, IDENTIFICATION, AND SIGNIFICANCE1 , 1967 .

[31]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[32]  J. Steele,et al.  The vertical distribution of chlorophyll , 1960, Journal of the Marine Biological Association of the United Kingdom.

[33]  Stephanie Dutkiewicz,et al.  Ocean colour signature of climate change , 2019, Nature Communications.

[34]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[35]  J. Cullen,et al.  Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? , 2015, Annual review of marine science.

[36]  G. Forget Mapping Ocean Observations in a Dynamical Framework: A 2004–06 Ocean Atlas , 2010 .

[37]  Christopher L. Follett,et al.  Can Rates of Ocean Primary Production and Biological Carbon Export Be Related Through Their Probability Distributions? , 2018, Global biogeochemical cycles.

[38]  M. Grant,et al.  Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data , 2017, Remote sensing of environment.

[39]  G. Toscani,et al.  The equivalence of Fourier-based and Wasserstein metrics on imaging problems , 2020, 2005.06530.

[40]  Richard W. Gould,et al.  An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI) , 2019, Sensors.

[41]  C. Villani Topics in Optimal Transportation , 2003 .

[42]  Chris Hill,et al.  Oceanic eddy detection and lifetime forecast using machine learning methods , 2016 .

[43]  L. Kantorovich On the Translocation of Masses , 2006 .

[44]  E. Berdalet,et al.  Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean , 1993 .

[45]  Christopher L. Follett,et al.  Moving ecological and biogeochemical transitions across the North Pacific , 2020, Limnology and oceanography.

[46]  E. Venrick,et al.  Deep maxima of photosynthetic chlorophyll in the Pacific Ocean , 1973 .

[47]  P Jeremy Werdell,et al.  Performance metrics for the assessment of satellite data products: an ocean color case study. , 2018, Optics express.