An introduction to microarray data analysis and visualization.

Microarray experiments offer a potential wealth of information but also present a significant data analysis challenge. A typical microarray data analysis project involves many interconnected manipulations of the raw experimental values, and each stage of the analysis challenges the experimenter to make decisions regarding the proper selection and usage of a variety of statistical techniques. In this chapter, we will provide an overview of each of the major stages of a typical yeast microarray project. We will focus on providing a solid conceptual foundation to help the reader better understand each of these steps, will highlight useful software tools, and will suggest best practices where applicable.

[1]  Hao Li Computational approaches to identifying transcription factor binding sites in yeast genome. , 2002, Methods in enzymology.

[2]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[3]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[4]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[5]  Steven C. Lawlor,et al.  GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways , 2002, Nature Genetics.

[6]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[8]  Stijn van Dongen,et al.  Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data , 2007, PLoS Comput. Biol..

[9]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[10]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[11]  Sandrine Dudoit,et al.  Bioconductor R Packages for Exploratory Analysis and Normalization of cDNA Microarray Data , 2003 .

[12]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[13]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[14]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[15]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[16]  Mark J. van der Laan,et al.  A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap , 2003 .

[17]  Jean Yee Hwa Yang,et al.  Analysis of CDNA Microarray Images , 2001, Briefings Bioinform..

[18]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[19]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[20]  G. Fink,et al.  Methods in enzymology vol 194 guide to yeast genetics and molecular biology , 1991 .