Molecular features underlying Pseudomonas aeruginosa 2 persistence in human plasma 3 4 5

[1]  D. A. Heesterbeek,et al.  Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores , 2021, bioRxiv.

[2]  H. Mori,et al.  Bacterial persisters are a stochastically formed subpopulation of low-energy cells , 2021, PLoS biology.

[3]  J. Colmer-Hamood,et al.  During bacteremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those involved in quorum sensing , 2020, PloS one.

[4]  L. Van Melderen,et al.  Bacterial behavior in human blood reveals complement evaders with persister-like features , 2020, bioRxiv.

[5]  T. Wood,et al.  (p)ppGpp and Its Role in Bacterial Persistence: New Challenges , 2020, Antimicrobial Agents and Chemotherapy.

[6]  J. Parkhill,et al.  Genomic Profiling Reveals Distinct Routes To Complement Resistance in Klebsiella pneumoniae , 2020, Infection and Immunity.

[7]  S. Lory,et al.  Species-specific recruitment of transcription factors dictates toxin expression , 2020, Nucleic acids research.

[8]  S. Molin,et al.  Bacterial persisters in long-term infection: Emergence and fitness in a complex host environment , 2019, bioRxiv.

[9]  Christopher M. Brown,et al.  Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens , 2019, Nature Microbiology.

[10]  L. Macdonald,et al.  A novel bispecific antibody platform to direct complement activity for efficient lysis of target cells , 2019, Scientific Reports.

[11]  S. Ram,et al.  Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody , 2019, PLoS biology.

[12]  J. Collins,et al.  Definitions and guidelines for research on antibiotic persistence , 2019, Nature Reviews Microbiology.

[13]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[14]  Youssif M. Ali,et al.  Bacteriophage Therapy Increases Complement-Mediated Lysis of Bacteria and Enhances Bacterial Clearance After Acute Lung Infection With Multidrug-Resistant Pseudomonas aeruginosa. , 2018, The Journal of infectious diseases.

[15]  E. Lander,et al.  Defining the core essential genome of Pseudomonas aeruginosa , 2018, Proceedings of the National Academy of Sciences.

[16]  K. Lewis,et al.  A Genetic Determinant of Persister Cell Formation in Bacterial Pathogens , 2018, Journal of bacteriology.

[17]  F. Brinkman,et al.  Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools , 2018, FEMS microbiology letters.

[18]  S. Lory,et al.  Complexity of Complement Resistance Factors Expressed by Acinetobacter baumannii Needed for Survival in Human Serum , 2017, The Journal of Immunology.

[19]  C. Bayly-Jones,et al.  The mystery behind membrane insertion: a review of the complement membrane attack complex , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  Meaghan C. Sullivan,et al.  Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa , 2017, Proceedings of the National Academy of Sciences.

[21]  K. Lewis,et al.  ATP-Dependent Persister Formation in Escherichia coli , 2017, mBio.

[22]  U. Jenal,et al.  LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa , 2016, Nature Microbiology.

[23]  J. Colmer-Hamood,et al.  Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries , 2016, PloS one.

[24]  Ryan M. Baxter,et al.  Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum , 2015, Infection and Immunity.

[25]  Jacques Corbeil,et al.  The Resistome of Pseudomonas aeruginosa in Relationship to Phenotypic Susceptibility , 2014, Antimicrobial Agents and Chemotherapy.

[26]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[27]  J. Colmer-Hamood,et al.  Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth , 2013, MicrobiologyOpen.

[28]  Xin Wang,et al.  Expression of mucoid induction factor MucE is dependent upon the alternate sigma factor AlgU in Pseudomonas aeruginosa , 2013, BMC Microbiology.

[29]  S. Beatson,et al.  The Serum Resistome of a Globally Disseminated Multidrug Resistant Uropathogenic Escherichia coli Clone , 2013, PLoS genetics.

[30]  K. Osawa,et al.  Modulation of O‐antigen chain length by the wzz gene in Escherichia coli O157 influences its sensitivities to serum complement , 2013, Microbiology and immunology.

[31]  S. Lory,et al.  A Comprehensive Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using High-Throughput Sequencing of Transposon Libraries , 2013, PLoS pathogens.

[32]  D. Grunwald,et al.  Unique Biofilm Signature, Drug Susceptibility and Decreased Virulence in Drosophila through the Pseudomonas aeruginosa Two-Component System PprAB , 2012, PLoS pathogens.

[33]  Stephen Lory,et al.  The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature , 2012, PLoS pathogens.

[34]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[35]  Hua-bing Zhao,et al.  Physiological role of the novel salicylaldehyde dehydrogenase NahV in mineralization of naphthalene by Pseudomonas putida ND6. , 2011, Microbiological research.

[36]  D. Schnappinger,et al.  Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression , 2011, PLoS pathogens.

[37]  Jan Michiels,et al.  Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. , 2011, Journal of medical microbiology.

[38]  G. Fichant,et al.  The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae. , 2011, Environmental microbiology.

[39]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[40]  C. Ebel,et al.  Anti-activator ExsD Forms a 1:1 Complex with ExsA to Inhibit Transcription of Type III Secretion Operons* , 2009, The Journal of Biological Chemistry.

[41]  A. Mankin,et al.  Nucleotide Biosynthesis Is Critical for Growth of Bacteria in Human Blood , 2008, PLoS pathogens.

[42]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[43]  J. Goldberg,et al.  Lipopolysaccharide O-Antigen Chain Length Regulation in Pseudomonas aeruginosa Serogroup O11 Strain PA103 , 2007, Journal of bacteriology.

[44]  S. Lory,et al.  Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Lory,et al.  A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.

[47]  J. Goldberg,et al.  The galU Gene of Pseudomonas aeruginosa Is Required for Corneal Infection and Efficient Systemic Spread following Pneumonia but Not for Infection Confined to the Lung , 2004, Infection and Immunity.

[48]  G. Pier,et al.  Role of Alginate O Acetylation in Resistance of Mucoid Pseudomonas aeruginosa to Opsonic Phagocytosis , 2001, Infection and Immunity.

[49]  A. Kharazmi,et al.  Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response , 1990, Infection and immunity.

[50]  A. Chakrabarty,et al.  High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains , 1989, Journal of bacteriology.

[51]  A. Jeanes,et al.  A new modification of the carbazole analysis: application to heteropolysaccharides. , 1968, Analytical biochemistry.

[52]  J. Parkhill,et al.  Genomic Profiling Reveals Distinct Routes To Complement Resistance in Klebsiella pneumoniae , 2020 .

[53]  A. Goesmann,et al.  Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment. , 2015, Environmental microbiology.

[54]  R. Sakalauskas,et al.  Pseudomonas aeruginosa bacteremia: resistance to antibiotics, risk factors, and patient mortality. , 2010, Medicina.

[55]  K. Lewis,et al.  Persister cells and tolerance to antimicrobials. , 2004, FEMS microbiology letters.

[56]  H. Schweizer,et al.  An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. , 1995, Gene.

[57]  Chunfang ZHANGt Pseudomonas aeruginosa. , 1966, Lancet.

[58]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK 2 dependent on a plasmid function provided in trans ( plasmid replication / replication origin / trans-complementation / broad host range / gene cloning ) , 2022 .