Rainbow Options in Discrete Time, II

This chapter is central for our exposition. It contains the main results describing the applications of the basic risk-neutral evaluation formula for games, developed in the previous chapter, to pricing rainbow (or colored) options under various market conditions. The first section sets the stage by defining the game of an investor with Nature leading to the basic game-theoretic expression for the hedging price in the simplest case of a standard European (rainbow) option without transaction costs. We then evaluate this expression using our risk-neutral evaluation formula, yielding various multidimensional extensions of the classic Cox–Ross–Rubinstein formula for a binomial model. The next sections show the essential simplifications that become available for submodular payoffs. In particular, even a unique risk-neutral selector can be specified sometimes, say, in the case of two-color options (for a still incomplete market). This is of key importance, as the major examples of real-life rainbow payoffs turn out to be submodular. Finally, transaction costs are fitted to our model.

[1]  Tamer Basar,et al.  Differential Games and Applications , 1989 .

[2]  J. Aubin Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .

[3]  Jean-Yves Le Boudec,et al.  A class of mean field interaction models for computer and communication systems , 2008, Perform. Evaluation.

[4]  Rüdiger Frey,et al.  PRICING AND HEDGING OF PORTFOLIO CREDIT DERIVATIVES WITH INTERACTING DEFAULT INTENSITIES , 2008 .

[5]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[6]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[7]  M. Rubinstein. Displaced Diffusion Option Pricing , 1983 .

[8]  Alexandre Ziegler,et al.  A Game Theory Analysis of Options: Corporate Finance and Financial Intermediation in Continuous Time , 2010 .

[9]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[10]  H. Soner,et al.  There is no nontrivial hedging portfolio for option pricing with transaction costs , 1995 .

[11]  William M. McEneaney,et al.  A Robust Control Framework for Option Pricing , 1997, Math. Oper. Res..

[12]  Warren Bower New directions , 1937 .

[13]  Hélyette Geman,et al.  Pricing and hedging in incomplete markets , 2001 .

[14]  Xiao-Tian Wang Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model , 2009 .

[15]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[16]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[17]  Geert Jan Olsder,et al.  Differential Game-Theoretic Thoughts on Option Pricing and Transaction Costs , 2000, IGTR.

[18]  J. Aubin Dynamic Economic Theory: A Viability Approach , 1997 .

[19]  Alain Bensoussan,et al.  Real Options Games in Complete and Incomplete Markets with Several Decision Makers , 2010, SIAM J. Financial Math..

[20]  J. Norris,et al.  Differential equation approximations for Markov chains , 2007, 0710.3269.

[21]  Mark M. Meerschaert,et al.  Correlated continuous time random walks , 2008, 0809.1612.

[22]  G. Haddad,et al.  Monotone viable trajectories for functional differential inclusions , 1981 .

[23]  D. Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .

[24]  Bernard De Meyer,et al.  On the strategic origin of Brownian motion in finance , 2003, Int. J. Game Theory.

[25]  Jean-Pierre Aubin,et al.  Path-Dependent Impulse and Hybrid Systems , 2001, HSCC.

[26]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[27]  Philippe Jorion Value at Risk , 2001 .

[28]  Stylianos Perrakis,et al.  Derivative Asset Pricing with Transaction Costs: An Extension , 1997 .

[30]  Georges Haddad,et al.  Monotone trajectories of differential inclusions and functional differential inclusions with memory , 1981 .

[31]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[32]  Geert Jan Olsder,et al.  Robust Control Approach to Digital Option Pricing:Synthesis Approach , 2009 .

[33]  A. J. Shaiju,et al.  Differential games with continuous, switching and impulse controls , 2005 .

[34]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[35]  Vassili N. Kolokoltsov,et al.  Idempotent Structures in Optimization , 2001 .

[36]  Vassili N. Kolokoltsov Measure-valued limits of interacting particle systems with k-nary interactions II. Finite-dimensional limits , 2004 .

[37]  F. Black,et al.  Theory of constant proportion portfolio insurance , 1992 .

[38]  Anatoly N. Kochubei,et al.  Distributed-order calculus: An operator-theoretic interpretation , 2007, 0710.1710.

[39]  B. Henry,et al.  Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. , 2010, Physical review letters.

[40]  I. Dolcetta On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .

[41]  Guy Barles,et al.  Option pricing with transaction costs and a nonlinear Black-Scholes equation , 1998, Finance Stochastics.

[42]  M. Friedman Essays in Positive Economics , 1954 .

[43]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[44]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .

[45]  Jean-Pierre Aubin,et al.  Viabilist and tychastic approaches to guaranteed ALM problem , 2012, Risk Decis. Anal..

[46]  Rama Cont,et al.  Constant Proportion Portfolio Insurance in Presence of Jumps in Asset Prices , 2007 .

[47]  G. Barles,et al.  Deterministic Minimax Impulse Control , 2010 .

[48]  Vassili N. Kolokoltsov,et al.  Understanding Game Theory: Introduction to the Analysis of Many Agent Systems with Competition and Cooperation , 2010 .

[49]  Martino Bardi,et al.  Stochastic and Differential Games , 1999 .

[50]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[51]  Zheng Li,et al.  A robust control approach to option pricing , 2000 .

[52]  Vassili N. Kolokoltsov,et al.  Game theoretic analysis of incomplete markets: emergence of probabilities, nonlinear and fractional Black-Scholes equations , 2011, Risk Decis. Anal..

[53]  Pierre Bernhard,et al.  Geometry of Optimal Paths around Focal Singular Surfaces in Differential Games , 2005 .

[54]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[55]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[56]  Krzysztof Szajowski,et al.  Advances in dynamic games : applications to economics, finance, optimization, and stochastic control , 2005 .

[57]  Pierre Bernhard,et al.  The Robust Control Approach to Option Pricing and Interval Models: An Overview , 2005 .

[58]  H. Föllmer,et al.  Optional decompositions under constraints , 1997 .

[59]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[60]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[61]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[62]  Shigeo Muto,et al.  Advances in Dynamic Games , 2005 .

[63]  David Hobson,et al.  Comparison results for stochastic volatility models via coupling , 2010, Finance Stochastics.

[64]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[65]  Jerzy Zabczyk,et al.  Chance and decision. Stochastic control in discrete time , 2013 .

[66]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[67]  Jean-Pierre Aubin,et al.  Characterization of Stochastic Viability of Any Nonsmooth Set Involving Its Generalized Contingent Curvature , 2003 .

[68]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[69]  M. Kelbert,et al.  Fractional random fields associated with stochastic fractional heat equations , 2005, Advances in Applied Probability.

[70]  J. M. Schumacher,et al.  Performance of hedging strategies in interval models , 2005, Kybernetika.

[71]  E. Crück,et al.  Target problems under state constraints for nonlinear controlled impulsive systems , 2002 .

[72]  Jean-Pierre Aubin,et al.  Dynamic Economic Theory , 1997 .

[73]  B. Roorda,et al.  COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS , 2005 .

[74]  Vassili N. Kolokoltsov,et al.  Nonexpansive maps and option pricing theory , 1998, Kybernetika.

[75]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[76]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[77]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[78]  P. Saint-Pierre Approximation of the viability kernel , 1994 .

[79]  Michèle Breton,et al.  Dynamic Programming Approach for Valuing Options in the GARCH Model , 2009, Manag. Sci..

[80]  N. H. Bingham,et al.  Risk-Neutral Valuation , 1998 .

[81]  Vassili N. Kolokoltsov,et al.  Pricing of Rainbow Options: Game Theoretic Approach , 2007, IGTR.

[82]  Pierre Bernhard,et al.  Robust Control Approach to Option Pricing, Including Transaction Costs , 2005 .

[83]  J.-P. Aubin,et al.  History Path Dependent Optimal Control and Portfolio Valuation and Management , 2002 .

[84]  G. Shafer,et al.  Probability and Finance: It's Only a Game! , 2001 .

[85]  Vassili N. Kolokoltsov,et al.  Generalized Continuous-Time Random Walks (CTRW), Subordination by Hitting Times and Fractional Dynamics , 2007, 0706.1928.

[86]  Stéphane Thiery Évaluation d'options "vanilles" et "digitales" dans le modèle de marché à intervalles , 2008 .

[87]  David Hobson,et al.  Volatility misspecification, option pricing and superreplication via coupling , 1998 .

[88]  Patrick Saint-Pierre,et al.  Nonlinear Impulse Target Problems under State Constraint: A Numerical Analysis Based on Viability Theory , 2004 .

[89]  Jean-Pierre Aubin,et al.  Viability Theory: New Directions , 2011 .

[90]  Salih N. Neftçi,et al.  An Introduction to the Mathematics of Financial Derivatives , 1996 .

[91]  R. Bellman Dynamic programming. , 1957, Science.

[92]  H. Frankowska,et al.  A stochastic filippov theorem , 1994 .

[93]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[94]  Guy Jumarie,et al.  Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio , 2010, Comput. Math. Appl..

[95]  Jean-Pierre Aubin,et al.  The viability theorem for stochastic differential inclusions 2 , 1998 .

[96]  A. Bensoussan,et al.  Stochastic equity volatility and the capital structure of the firm , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[97]  S. Pliska Introduction to Mathematical Finance: Discrete Time Models , 1997 .

[98]  Jean-Pierre Aubin,et al.  Stochastic Invariance for Differential Inclusions , 2000 .

[99]  Jean-Pierre Aubin,et al.  Stochastic nagumo's viability theorem , 1995 .

[100]  Walter Willinger,et al.  Dynamic spanning without probabilities , 1994 .

[101]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[102]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[103]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[104]  Jan Palczewski,et al.  From Discrete to Continuous Time Evolutionary Finance Models , 2008 .

[105]  V. Kolokoltsov Markov Processes, Semigroups and Generators , 2011 .

[106]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[107]  Pierre Bernhard,et al.  Singular surfaces in differential games an introduction , 1977 .

[108]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[109]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[110]  Mohit Dayal,et al.  Option replication with transaction costs: general diffusion limits , 1998 .

[111]  Victor Pavlovich Maslov,et al.  Nonlinear Averages in Economics , 2005 .

[112]  Patrick Saint-Pierre,et al.  Beyond Optimality : Managing Children, Assets, and Consumption over the Life Cycle , 2008 .

[113]  Salih N. Neftci,et al.  Principles of financial engineering , 2004 .

[114]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[115]  Alain Bensoussan,et al.  Stochastic equity volatility related to the leverage effect II: valuation of European equity options and warrants , 1995 .

[116]  Georges Haddad,et al.  Topological properties of the sets of solutions for functional differential inclusions , 1981 .

[117]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[118]  Naïma El Farouq,et al.  Robust Control Approach to Option Pricing: A Representation Theorem and Fast Algorithm , 2007, SIAM J. Control. Optim..

[119]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[120]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[121]  Vassili N. Kolokoltsov,et al.  Fractional Stable Distributions , 2001 .

[122]  Jean-Paul Laurent,et al.  Hedging CDO Tranches in a Markovian Environment , 2011 .

[123]  Naïma El Farouq,et al.  An Impulsive Differential Game Arising in Finance with Interesting Singularities , 2006 .

[124]  P. Samuelson Lifetime Portfolio Selection by Dynamic Stochastic Programming , 1969 .

[125]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[126]  Siu-Ah Ng,et al.  Hypermodels in Mathematical Finance:Modelling via Infinitesimal Analysis , 2003 .

[127]  Monique Jeanblanc,et al.  Hedging of Defaultable Claims , 2004 .

[128]  V. Kolokoltsov Nonlinear Markov Processes and Kinetic Equations , 2010 .

[129]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[130]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[131]  Giuseppe Da Prato,et al.  Invariance of stochastic control systems with deterministic arguments , 2004 .

[132]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[133]  Alexandre Ziegler,et al.  Incomplete Information and Heterogeneous Beliefs in Continuous-time Finance , 2003 .

[134]  Alain Bensoussan,et al.  Stochastic equity volatility related to the leverage effect , 1994 .

[135]  Jean-Pierre Aubin,et al.  Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty , 2005 .