Efficient ternary bulk heterojunction solar cells based on small molecules only

Ternary bulk heterojunctions (BHJs) are platforms that can improve the power conversion efficiencies of organic solar cells. In this paper, we report an all-small-molecule ternary BHJ solar cell incorporating [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and indene-C60 bisadduct (ICBA) as mixed acceptors and the conjugated small molecule (2Z,2′E)-dioctyl 3,3′-(5′′,5′′′′′-(4,8-bis(5-octylthiophen-2-yl)benzo[1,2-b:5,4-b′]dithiophene-2,6-diyl)bis(3,4′,4′′-trioctyl-[2,2′:5′,2′′-terthiophene]-5′′,5-diyl))bis(2-cyanoacrylate) (BDT6T) as a donor. When incorporating a 15% content of ICBA relative to PC71BM, the ternary BHJ solar cell reached a power conversion efficiency of 6.36% with a short-circuit current density (JSC) of 12.00 mA cm−2, an open-circuit voltage (VOC) of 0.93 V, and a fill factor of 0.57. The enhancement in efficiency, relative to that of the binary system, resulted mainly from the increased value of JSC, attributable to not only the better intermixing of the donor and acceptor that improved charge transfer but also the more suitable morphology for efficient dissociation of excitons and more effective charge extraction. Our results suggest that there is great potential for exceeding the efficiencies of binary solar cells by adding a third component, without sacrificing the simplicity of the fabrication process.

[1]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[2]  Huiqiong Zhou,et al.  Polymer Homo‐Tandem Solar Cells with Best Efficiency of 11.3% , 2015, Advanced materials.

[3]  Thuc‐Quyen Nguyen,et al.  High open-circuit voltage small-molecule p-DTS(FBTTh2)2:ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance , 2015 .

[4]  Jin Jang,et al.  A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83% , 2015 .

[5]  Yang Yang,et al.  The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy , 2014 .

[6]  Yan Huang,et al.  A low bandgap asymmetrical squaraine for high-performance solution-processed small molecule organic solar cells. , 2014, Chemical communications.

[7]  Yongfang Li,et al.  Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor , 2014 .

[8]  Fujun Zhang,et al.  Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules. , 2014, ACS applied materials & interfaces.

[9]  S. Chang,et al.  Broadband charge transfer dynamics in P3HT:PCBM blended film. , 2013, Optics letters.

[10]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[11]  K. Ho,et al.  2-Alkyl-5-thienyl-substituted benzo[1,2-b:4,5-b']dithiophene-based donor molecules for solution-processed organic solar cells. , 2013, ACS applied materials & interfaces.

[12]  Yang Yang,et al.  The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems , 2013 .

[13]  Yongsheng Chen,et al.  Improved efficiency of solution processed small molecules organic solar cells using thermal annealing , 2013 .

[14]  Qian Zhang,et al.  Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. , 2013, Journal of the American Chemical Society.

[15]  Christoph J. Brabec,et al.  IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells , 2013 .

[16]  Jie Zhang,et al.  Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure , 2013, Advanced materials.

[17]  W. Su,et al.  Enhancing the efficiency of low bandgap conducting polymer bulk heterojunction solar cells using P3HT as a morphology control agent , 2013 .

[18]  Christoph J. Brabec,et al.  Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small‐Bandgap Polymer , 2012 .

[19]  Yongsheng Chen,et al.  Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells. , 2012, Journal of the American Chemical Society.

[20]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[21]  G. Itskos,et al.  Optical Properties of Organic Semiconductor Blends with Near‐Infrared Quantum‐Dot Sensitizers for Light Harvesting Applications , 2011 .

[22]  B. Thompson,et al.  Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. , 2011, Journal of the American Chemical Society.

[23]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[24]  Srinivas Sista,et al.  Tandem polymer photovoltaic cells—current status, challenges and future outlook , 2011 .

[25]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[26]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[27]  Ashok Kumar,et al.  Efficient bulk heterojunction solar cells based on low band gap bisazo dyes containing anthracene and/or pyrrole units , 2010 .

[28]  N. S. Sariciftci,et al.  The effects of CdSe incorporation into bulk heterojunction solar cells , 2010 .

[29]  Choongik Kim,et al.  Solution-processable low-molecular weight extended arylacetylenes: versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells. , 2010, Journal of the American Chemical Society.

[30]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[31]  Neil C. Greenham,et al.  Conjugated‐Polymer Blends for Optoelectronics , 2009 .

[32]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[33]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[34]  J. Roncali,et al.  Multi-donor molecular bulk heterojunction solar cells: improving conversion efficiency by synergistic dye combinations , 2009 .

[35]  G. Malliaras,et al.  Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. , 2007, Journal of the American Chemical Society.

[36]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[37]  Juan Bisquert,et al.  Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells , 2003 .

[38]  Dongqing Li,et al.  EQUATION OF STATE FOR INTERFACIAL TENSIONS OF SOLID-LIQUID SYSTEMS , 1992 .

[39]  Peter Mark,et al.  Space‐Charge‐Limited Currents in Organic Crystals , 1962 .