Symmetric quadrature rules for tetrahedra based on a cubic close-packed lattice arrangement

A family of quadrature rules for integration over tetrahedral volumes is developed. The underlying structure of the rules is based on the cubic close-packed (CCP) lattice arrangement using 1, 4, 10, 20, 35, and 56 quadrature points. The rules are characterized by rapid convergence, positive weights, and symmetry. Each rule is an optimal approximation in the sense that lower-order terms have zero contribution to the truncation error and the leading-order error term is minimized. Quadrature formulas up to order 9 are presented with relevant numerical examples.

[1]  Hui,et al.  A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA , 2009 .

[2]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[3]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[4]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[5]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[6]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[7]  Philip E. Gill,et al.  Practical optimization , 1981 .

[8]  A. H. Stroud,et al.  A Fifth Degree Integration Formula for the n-Simplex , 1969 .

[9]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[10]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[11]  H. M. Möller,et al.  Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .

[12]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[13]  J. N. Lyness,et al.  On Simplex Trapezoidal Rule Families , 1980 .

[14]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[15]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[16]  R. Cools Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .

[17]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[18]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[19]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[20]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[21]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[22]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .