Microspore‐derived embryogenesis in pepper (Capsicum annuum L.): subcellular rearrangements through development

Background information. In vitro‐cultured microspores, after an appropriate stress treatment, can switch towards an embryogenic pathway. This process, known as microspore embryogenesis, is an important tool in plant breeding. Basic studies on this process in economically interesting crops, especially in recalcitrant plants, are very limited and the sequence of events is poorly understood. In situ studies are very convenient for an appropriate dissection of microspore embryogenesis, a process in which a mixture of different cell populations (induced and non‐induced) develop asynchronically.

[1]  J. M. Seguí-Simarro,et al.  Differentiating plant cells switched to proliferation remodel the functional organization of nuclear domains , 2005, Cytogenetic and Genome Research.

[2]  Ó. Vicente,et al.  In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis inCapsicum , 1995, Protoplasma.

[3]  J. M. Seguí-Simarro,et al.  Mitogen-activated protein kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L , 2005, Histochemistry and Cell Biology.

[4]  M. Kim,et al.  Origin of Multicellular Pollen and Pollen Embryos in Cultured Anthers of Pepper (Capsicum Annuum) , 2004, Plant Cell, Tissue and Organ Culture.

[5]  R. Veilleux,et al.  Phenotypic characterization and bulk segregant analysis of anther culture response in two backcross families of diploid potato , 2002, Plant Cell, Tissue and Organ Culture.

[6]  R. Veilleux,et al.  Improved androgenesis of interspecific potato and efficiency of SSR markers to identify homozygous regenerants , 2000, Plant Cell, Tissue and Organ Culture.

[7]  V. Sotirova,et al.  Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants , 1998, Plant Cell Reports.

[8]  R. Veilleux,et al.  Indifference of potato anther culture to colchicine and genetic similarity among anther-derived monoploid regenerants determined by RAPD analysis , 1998, Plant Cell, Tissue and Organ Culture.

[9]  J. Cordewener,et al.  Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus , 1994, Plant Cell Reports.

[10]  P. Binarová,et al.  Nuclear DNA synthesis during the induction of embryogenesis in cultured microspores and pollen of Brassica napus L. , 1993, Theoretical and Applied Genetics.

[11]  E. Heberle‐Bors In vitro haploid formation from pollen: a critical review , 1985, Theoretical and Applied Genetics.

[12]  G. Ladizinsky,et al.  Lycopersicon esculentum: Trifoliate plants recovered from anther cultures of heterozygous tftf plants , 1984, Plant Cell Reports.

[13]  M. A. Moreno-Risueno,et al.  Changes in pectins and MAPKs related to cell development during early microspore embryogenesis in Quercus suber L. , 2004, European journal of cell biology.

[14]  Thomas L. Reynolds Pollen embryogenesis , 2004, Plant Molecular Biology.

[15]  H. Dickinson,et al.  Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development , 2004, Sexual Plant Reproduction.

[16]  R. Sangwan,et al.  The tonoplast, a specific marker of embryogenic microspores of Datura cultured in vitro , 2004, Histochemistry.

[17]  J. M. Seguí-Simarro,et al.  Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. , 2003, Journal of structural biology.

[18]  M. Coronado,et al.  Young microspore-derived maize embryos show two domains with defined features also present in zygotic embryogenesis. , 2002, The International journal of developmental biology.

[19]  M. Coronado,et al.  MAPKs entry into the nucleus at specific interchromatin domains in plant differentiation and proliferation processes. , 2002, Journal of structural biology.

[20]  M. S. Pais,et al.  Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget. , 2002, Physiologia plantarum.

[21]  P. Testillano,et al.  The switch of the microspore developmental program in Capsicum involves HSP70 expression and leads to the production of haploid plants , 2001 .

[22]  E. Heberle‐Bors,et al.  Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo , 2001, Planta.

[23]  T Misteli,et al.  Functional architecture in the cell nucleus. , 2001, The Biochemical journal.

[24]  P. Testillano,et al.  Immunoelectron microscopy of PCNA as an efficient marker for studying replication times and sites during pollen development , 2000, Chromosoma.

[25]  I. Raška,et al.  Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. , 2000, Journal of structural biology.

[26]  G. Gyulai,et al.  Doubled Haploid Development and PCR-analysis of F1 Hybrid Derived DH-R2 Paprika (Capsicum annuum L.) Lines , 2000 .

[27]  V. Raghavan Developmental Biology of Flowering Plants , 1999, Springer New York.

[28]  J. Manzanera,et al.  Somatic and Gamatic Embryogenesis in Quercus Suber L. , 2000 .

[29]  S. Guha-Mukherjee The discovery of haploid production by anther culture , 1999, In Vitro Cellular & Developmental Biology - Plant.

[30]  J. Kumlehn,et al.  Monitoring sporophytic development of individual microspores of barley (Hordeum vulgare L.) , 1999 .

[31]  L. Catoire,et al.  Investigation of the Action Patterns of Pectinmethylesterase Isoforms through Kinetic Analyses and NMR Spectroscopy , 1998, The Journal of Biological Chemistry.

[32]  L. Shtereva,et al.  Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis , 1998, Plant Cell Reports.

[33]  B. Dimitrov,et al.  Induced androgenesis in tomato (Lycopersicon esculentum Mill.) I. Influence of genotype on androgenetic ability , 1998, Plant Cell Reports.

[34]  Y. Chupeau,et al.  Androgenesis and haploid plants , 1998 .

[35]  E. Heberle‐Bors,et al.  Initiation of microspore embryogenesis by stress , 1997 .

[36]  E. Claveria,et al.  Androgenesis in Capsicum annuum L.: effects of carbohydrate and carbon dioxide enrichment , 1997 .

[37]  J. Manzanera,et al.  Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber) , 1997 .

[38]  N. Vardaxis,et al.  Aluminum acid alizarin violet: a general purpose nuclear fluorochrome. , 1997, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[39]  M. Nepi,et al.  Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance , 1996 .

[40]  P. Testillano,et al.  New in situ approaches to study the induction of pollen embryogenesis in Capsicum annuum L. , 1996, European journal of cell biology.

[41]  E. Yeung,et al.  Comparative Development of Zygotic and Microspore-Derived Embryos in Brassica napus L. CV Topas. I. Histodifferentiation , 1996, International Journal of Plant Sciences.

[42]  G. Hause,et al.  Induction of embryogenesis in [isolated] microspores and pollen of Brassica napus L. cv. Topas , 1996 .

[43]  P. Testillano,et al.  The immunolocalization of nuclear antigens during the pollen developmental program and the induction of pollen embryogenesis. , 1995, Experimental cell research.

[44]  I. Raška Nuclear ultrastructures associated with the RNA synthesis and processing , 1995, Journal of cellular biochemistry.

[45]  M. Fári,et al.  Anther-culture response in different genotypes and F1 hybrids of pepper (Capsicum annuum L.) , 1995 .

[46]  S. McCormick,et al.  Male Gametophyte Development. , 1993, The Plant cell.

[47]  S. Fry,et al.  Oligosaccharides as Signals and Substrates in the Plant Cell Wall , 1993, Plant physiology.

[48]  Begoña Fadón Salazar Estudio ultraestructural y detección in situ de macromoleculas durante el desarrollo del polen de Capsicum annuum L. en relación con el proceso de inducción de la androgenesis in vitro , 1993 .

[49]  M. Germanà,et al.  ANDROGENESIS IN 5 CULTIVARS OF CITRUS LIMON L. BURM. F , 1992 .

[50]  D. Bartels,et al.  Messenger-RNA and protein changes associated with induction of Brassica microspore embryogenesis , 1991, Planta.

[51]  E. Heberle‐Bors,et al.  Pollen cultures as a tool to study plant development. , 1991, Cell biology reviews : CBR.

[52]  M. Sánchez-Pina,et al.  Variations of Nucleolar Ultrastructure in Relation to Transcriptional Activity During G1 S, and G2 Periods of Microspore Interphase , 1988 .

[53]  C. Dumas,et al.  Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. , 1987, Stain Technology.

[54]  F. Medina,et al.  The nucleolar structure in plant cells. , 1986, Revisiones sobre biologia celular : RBC.

[55]  V. Raghavan Embryogenesis in angiosperms. A developmental and experimental study. , 1986 .

[56]  F. Medina,et al.  Nucleolar fibrillar centres in plant meristematic cells: ultrastructure, cytochemistry and autoradiography. , 1982, Journal of cell science.

[57]  Robert Dumas de Vaulx,et al.  Culture in vitro d'anthères de piment (Capsicum annuum L.) : amélioration des taux d'obtention de plantes chez différents génotypes par des traitements à + 35 °C , 1981 .

[58]  Rudolf Schmid,et al.  The study of plant structure: Principles and selected methods , 1981 .

[59]  D. Zamir,et al.  Anther culture of male-sterile tomato (Lycopersicon esculentum mill.) mutants , 1980 .

[60]  S. Maheshwari,et al.  In vitro Production of Embryos from Anthers of Datura , 1964, Nature.