Application of the SAFT-γ Mie group contribution equation of state to fluids of relevance to the oil and gas industry

Abstract The application of the SAFT-γ Mie group contribution approach [Papaioannou et al., J. Chem. Phys., 140 (2014) 054107] to the study of a range of systems of relevance to the oil and gas industry is presented. In particular we consider carbon dioxide, water, methanol, aromatics, alkanes, and their mixtures. Following a brief overview of the SAFT-γ Mie equation of state, a systematic methodology for the development of like and unlike group parameters relevant to the systems of interest is presented. The determination of group–group interactions entails a sequence of steps including: the selection of representative components and mixtures (in this instance carbon dioxide, water, methanol, aromatics, and alkanes); the definition of an appropriate set of groups to describe them; the collection of target experimental data used to estimate the group–group interactions; the determination of the group–group interaction parameters; and the assessment of the adequacy of the parameters and theoretical approach. The predictive capability of the SAFT-γ Mie group contribution approach is illustrated for a selection of mixtures, including representative examples of the simultaneous description of vapour–liquid and liquid–liquid equilibria, the densities of the coexisting phases, second derivative thermodynamic properties, and excess properties of mixing. Good quantitative agreement between the predictions and experimental data is achieved, even in the case of challenging mixtures comprising carbon dioxide and water, n-alkanes and water, and methanol and methane.

[1]  E. Voutsas,et al.  Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory , 2000 .

[2]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[3]  George Jackson,et al.  Modeling the Cloud Curves and the Solubility of Gases in Amorphous and Semicrystalline Polyethylene with the SAFT-VR Approach and Flory Theory of Crystallization , 2004 .

[4]  R. M. Izatt,et al.  Calorimetric determination of thermodynamic quantities for chemical reactions in the system CO2−NaOH−H2O from 225 to 325°C , 1992 .

[5]  J. Merlin,et al.  Mesure des pressions de vapeur d'hydrocarbures C10 A C18n-alcanes etn-alkylbenzenes dans le domaine 3-1000 pascal , 1986 .

[6]  M. M. Piñeiro,et al.  A comprehensive description of chemical association effects on second derivative properties of alcohols through a SAFT-VR approach. , 2007, The journal of physical chemistry. B.

[7]  W. Su,et al.  Effect of Water on Solubility of Carbon Dioxide in (Aminomethanamide + 2-Hydroxy-N,N,N-trimethylethanaminium Chloride) , 2009 .

[8]  A. Galindo,et al.  Modelling the phase equilibria and excess properties of the water + carbon dioxide binary mixture , 2007 .

[9]  M. Postigo,et al.  Solubility and thermodynamics of carbon dioxide in aqueous ethanol solutions , 1987 .

[10]  D. Robinson,et al.  Equilibrium-phase properties of n-pentane-carbon dioxide system , 1973 .

[11]  Jean-Noël Jaubert,et al.  VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method , 2004 .

[12]  A. Galindo,et al.  The A in SAFT: developing the contribution of association to the Helmholtz free energy within a Wertheim TPT1 treatment of generic Mie fluids , 2015 .

[13]  R. Crovetto,et al.  Solubility of Co2 in water and density of aqueous Co2 near the solvent critical temperature , 1992 .

[14]  G. Schneider High-pressure investigations of fluid mixtures — review and recent results , 1998 .

[15]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[16]  Amparo Galindo,et al.  Prediction of the Salting-Out Effect of Strong Electrolytes on Water + Alkane Solutions , 2003 .

[17]  Jianguo Liu,et al.  Liquid−Liquid Equilibria for Methanol + Water + Hexane Ternary Mixtures , 2002 .

[18]  C. Adjiman,et al.  The development of unlike induced association-site models to study the phase behaviour of aqueous mixtures comprising acetone, alkanes and alkyl carboxylic acids with the SAFT-g Mie group contribution methodology , 2016 .

[19]  K. Růžička,et al.  Vapor pressures for a group of high-boiling alkylbenzenes under environmental conditions , 1994 .

[20]  C. Buehler,et al.  PARACHOR STUDIES AT VARIOUS TEMPERATURES , 1937 .

[21]  A. Galindo,et al.  Phase equilibria, excess properties, and henry's constants of the water + carbon dioxide binary mixture , 2007 .

[22]  H. Clever,et al.  The excess enthalpies of the 15 binary mixtures formed from cyclohexane, benzene, toluene, 1,4-dimethylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene at 298.15 K , 1975 .

[23]  J. V. Oliveira,et al.  Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water , 2006 .

[24]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[25]  T. S. Brown,et al.  Vapor + Liquid Equilibria for the Ternary System Methane + Ethane + Carbon Dioxide at 230 K and Its Constituent Binaries at Temperatures from 207 to 270 K , 1995 .

[26]  George Jackson,et al.  SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. , 2011, The journal of physical chemistry. B.

[27]  E. Brunner Fluid mixtures at high pressures II. Phase separation and critical phenomena of (ethane + an n-alkanol) and of (ethene + methanol) and (propane + methanol) , 1985 .

[28]  R. Kobayashi,et al.  The measurement and interpretation of the fluid-phase equilibria of a normal fluid in a hydrogen bonding solvent: the methanemethanol system , 1987 .

[29]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Water + n-Alkanes Using a Simplified SAFT Theory with Transferable Intermolecular Interaction Parameters , 1996 .

[30]  Clare McCabe,et al.  SAFT-VR modelling of the phase equilibrium of long-chain n-alkanes , 1999 .

[31]  F. Mutelet,et al.  Predicting the phase equilibria of CO2+hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method) , 2008 .

[32]  G. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories , 2010 .

[33]  D. Richon,et al.  Vapor-liquid equilibrium data for the propane-methanol and propane-methanol-carbon dioxide system , 1986 .

[34]  K. D. Luks,et al.  Observations on the multiphase equilibria behavior of CO2-rich and ethane-rich mixtures , 1989 .

[35]  R. Privat,et al.  Predicting the Phase Equilibria, Critical Phenomena, and Mixing Enthalpies of Binary Aqueous Systems Containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N2, CO2, H2S, H2) with the PPR78 Equation of State , 2013 .

[36]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[37]  Helmut Knapp,et al.  Experimental and modeling studies on the solubility of CO2, CHC1F2, CHF3, C2H2F4 and C2H4F2 in water and aqueous NaCl solutions under low pressures , 1997 .

[38]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems.Composition of the Dew-Point Gas of the Methane-Water System , 1942 .

[39]  M. M. Piñeiro,et al.  An examination of the ternary methane + carbon dioxide + water phase diagram using the SAFT-VR approach. , 2011, The journal of physical chemistry. B.

[40]  J. Linek,et al.  Gleichgewicht flüssigkeit-dampf XXXIV. System äthylbenzol-cumol-butylbenzol unter atmosphärischem druck , 1965 .

[41]  George Jackson,et al.  SAFT- γ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n -alkanes , 2016 .

[42]  F. Rossini,et al.  Vapor pressures and boiling points of sixty API-NBS hydrocarbons , 1949 .

[43]  Esther Forte,et al.  Experimental and modeling study of the phase behavior of (methane + CO2 + water) mixtures. , 2014, Journal of Physical Chemistry B.

[44]  Masahiro Kato,et al.  Phase equilibrium properties of ethane+methanol system at 298.15 K , 1998 .

[45]  E. Grüneisen,et al.  Theorie des festen Zustandes einatomiger Elemente , 1912 .

[46]  A. J. Ellis,et al.  The solubility of carbon dioxide above 100 degrees C in water and in sodium chloride solutions , 1963 .

[47]  Rui Sun,et al.  Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2O-CO2 system , 2010 .

[48]  Jan V. Sengers,et al.  Thermodynamic Behavior of Fluids Near the Critical Point , 1986 .

[49]  Talgat S. Khasanshin,et al.  Thermodynamic Properties of Heavy n-Alkanes in the Liquid State: n-Dodecane , 2003 .

[50]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[51]  Ju Hyok Kim,et al.  Vapor–liquid equilibria for the carbon dioxide + propane system over a temperature range from 253.15 to 323.15 K , 2005 .

[52]  V. Alopaeus,et al.  Solubility of carbon dioxide in aqueous solutions of diisopropanolamine and methyldiethanolamine , 2010 .

[53]  Claire S. Adjiman,et al.  A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments , 2008 .

[54]  G. Sieder,et al.  High-pressure (vapor+liquid) equilibrium in binary mixtures of (carbon dioxide+water or acetic acid) at temperatures from 313 to 353 K , 2000 .

[55]  Zhi‐Wu Yu,et al.  Volumetric properties of binary systems between tetralin and alkylbenzenes , 1999 .

[56]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[57]  T. Kamiyama,et al.  Enthalpies of Solution of Aliphatic Amines, Aliphatic Benzene, and Alkane in Dimethyl Sulfoxide at 298.15 K , 2004 .

[58]  George Jackson,et al.  Phase equilibria of associating fluids , 2006 .

[59]  K. Kojima,et al.  Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water , 1995 .

[60]  M. Michelsen,et al.  Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 2. Cross-Associating and Multicomponent Systems , 2006 .

[61]  J. D. Hemptinne,et al.  Solubility of Hydrocarbons and CO2 Mixtures in Water under High Pressure , 1999 .

[62]  George Jackson,et al.  Accurate statistical associating fluid theory for chain molecules formed from Mie segments. , 2013, The Journal of chemical physics.

[63]  J. Hales,et al.  Liquid densities from 293 to 490 K of nine aromatic hydrocarbons , 1972 .

[64]  Hailong Li,et al.  Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes , 2009 .

[65]  E. A. Brignole,et al.  A group contribution equation of state for associating mixtures , 1996 .

[66]  Claire S. Adjiman,et al.  Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach , 2011 .

[67]  A. Galindo,et al.  Developing intermolecular‐potential models for use with the SAFT‐VR Mie equation of state , 2015 .

[68]  J. McCoubrey,et al.  Intermolecular forces between unlike molecules. A more complete form of the combining rules , 1960 .

[69]  R. M. Izatt,et al.  The excess enthalpies of (carbon dioxide + pentane) at 348.15, 373.15, 413.15, 470.15, and 573.15 K from 7.58 to 12.45 MPa , 1986 .

[70]  Claire S. Adjiman,et al.  Prediction of Thermodynamic Properties and Phase Behavior of Fluids and Mixtures with the SAFT-γ Mie Group-Contribution Equation of State , 2014 .

[71]  J. D. Hemptinne,et al.  Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series , 2004 .

[72]  Dimitrios P. Tassios,et al.  An Equation of State for Associating Fluids , 1996 .

[73]  S. Verevkin,et al.  Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes , 2006 .

[74]  D. Fenby,et al.  Determination of the equilibrium constants of water-methanol deuterium exchange reactions from vapour pressure measurements , 1980 .

[75]  Andre Peneloux,et al.  A consistent correction for Redlich-Kwong-Soave volumes , 1982 .

[76]  F. M. Royo,et al.  Solubility of non polar gases in formaldehyde diethyl acetal between-10 and 30°C, and 1 Atm partial pressure of gas , 1990 .

[77]  R. K. Code,et al.  Examination of ethanol-n-heptane, methanol-n-hexane systems using new vapor-liquid equilibrium still , 1972 .

[78]  J. Prausnitz,et al.  SOLUBILITIES OF GASES IN WATER AT HIGH TEMPERATURES , 1981 .

[79]  P. Bishnoi,et al.  Kinetics of carbon dioxide and methane hydrate formation , 1997 .

[80]  Junji Tokunaga Solubilities of oxygen, nitrogen, and carbon dioxide in aqueous alcohol solutions , 1975 .

[81]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene , 2012 .

[82]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[83]  S. Pereda,et al.  Modeling alcohol + water + hydrocarbon mixtures with the group contribution with association equation of state GCA-EoS , 2010 .

[84]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .

[85]  F. Llovell,et al.  Capturing the solubility minima of n-alkanes in water by soft-SAFT. , 2009, The journal of physical chemistry. B.

[86]  Taher A. Al-Sahhaf,et al.  Liquid + vapor equilibriums in the nitrogen + carbon dioxide + methane system , 1983 .

[87]  C. Adjiman,et al.  SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes. , 2013, The journal of physical chemistry. B.

[88]  O. Redlich,et al.  Group Interactin. I. A Model for Interaction in Solutions , 1959 .

[89]  G. Kontogeorgis,et al.  Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures , 1999 .

[90]  Jean-Noël Jaubert,et al.  Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: Application to the definition of the PR2SRK model , 2010 .

[91]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[92]  Wallace B. Whiting,et al.  Effects of Uncertainties in Thermodynamic Data and Models on Process Calculations , 1996 .

[93]  P. Englezos,et al.  Vapor–liquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT , 2004 .

[94]  J. Ortega,et al.  Thermodynamic study of the mixtures (butylbenzene + an alkane or + an alkyl ethanoate): experimental and values , 2007 .

[95]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[96]  F. Rossini,et al.  Physical Properties of n-Hexadecane, n-Decylcyclopentane, n-Decylcyclohexane, 1-Hexadecene and n-Decylbenzene , 1954 .

[97]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the n-Decane-CO2 System. , 1963 .

[98]  I. Mokbel,et al.  Vapor pressure of 11 alkylbenzenes in the range 10−3 – 280 torr, correlation by equation of state , 1993 .

[99]  W. V. Steele,et al.  Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, sec-Butylbenzene, tert-Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-ethyl-1,3-propanediol, 2,2,4-Trimethyl-1,3-pentanediol, and 1-Chloro-2-propanol , 2002 .

[100]  Kamil Paduszyński,et al.  Heterosegmented Perturbed-Chain Statistical Associating Fluid Theory as a Robust and Accurate Tool for Modeling of Various Alkanes. 1. Pure Fluids , 2012 .

[101]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. n-Butane-Water System in the Two-Phase Region. , 1944 .

[102]  Clare McCabe,et al.  Developing a predictive group-contribution-based SAFT-VR equation of state , 2009 .

[103]  I. Mokbel,et al.  Low vapor pressures of 12 aromatic hydrocarbons. Experimental and calculated data using a group contribution method , 1998 .

[104]  R. Eganhouse,et al.  Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes , 1992 .

[105]  G. K. Anderson Solubility of Carbon Dioxide in Water under Incipient Clathrate Formation Conditions , 2002 .

[106]  A. G. Williamson,et al.  Isothermal liquid-vapor equilibriums for system methanol-water , 1976 .

[107]  S. S. Ashour,et al.  Solubility and diffusivity of nitrous oxide in ternary mixtures of water, monoethanolamine, and N-methyldiethanolamine and solution densities and viscosities , 1995 .

[108]  M. Michelsen,et al.  Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mix , 2011 .

[109]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[110]  M. C. Ramos,et al.  Extending the GC-SAFT-VR approach to associating functional groups: Alcohols, aldehydes, amines and , 2011 .

[111]  R. Battino,et al.  Low-pressure solubility of gases in liquid water , 1977 .

[112]  R. M. Izatt,et al.  Simultaneous measurement of excess enthalpies and solution densities in a flow calorimeter , 1991 .

[113]  Sven Horstmann,et al.  Experimental determination and prediction of gas solubility data for CO2 + H2O mixtures containing NaCl or KCl at temperatures between 313 and 393 K and pressures up to 10 MPa , 2002 .

[114]  N. Dhar,et al.  Excess enthalpies of binary mixtures of benzene with n-propylbenzene, n-butylbenzene, n-hexylbenzene AT 298.15, 308.15 and 318.15 K , 1989 .

[115]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the Propane-Carbon Dioxide System , 1951 .

[116]  Luís M. N. B. F. Santos,et al.  Water solubility in linear fluoroalkanes used in blood substitute formulations. , 2006, The journal of physical chemistry. B.

[117]  G. C. Benson,et al.  The thermodynamic properties of binary aromatic systems II. Excess enthalpies and volumes of benzene + toluene and toluene + isomeric xylene mixtures at 25 °C☆ , 1969 .

[118]  B. Lu,et al.  Mutual Solubilities of Hydrocarbons and Water at 0 and 25 °C , 1973 .

[119]  G. Jackson,et al.  SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range , 2015 .

[120]  Frances E. Pereira,et al.  A duality-based optimisation approach for the reliable solution of (P, T) phase equilibrium in volume-composition space , 2010 .

[121]  K. Gubbins,et al.  Phase equilibria of associating fluids : spherical molecules with multiple bonding sites , 1988 .

[122]  C. Coquelet,et al.  Hydrocarbons – water phase equilibria using the CPA equation of state with a group contribution method , 2015 .

[123]  Ali Danesh,et al.  Comparative study of cubic equations of state for predicting phase behaviour and volumetric properties of injection gas-reservoir oil systems , 1991 .

[124]  Ralf Dohrn,et al.  Thermophysical properties—Industrial directions , 2002 .

[125]  G. Schneider,et al.  Liquid-liquid phase equilibria of binary mixtures of methanol with hexane, nonane and decane at pressures up to 150 MPA , 1986 .