From discrete to continuum modelling of boundary value problems in geomechanics: An integrated FEM‐DEM approach

Double‐scale numerical methods constitute an effective tool for simultaneously representing the complex nature of geomaterials and treating real‐scale engineering problems such as a tunnel excavation or a pressuremetre at a reasonable numerical cost. This paper presents an approach coupling discrete elements (DEM) at the microscale with finite elements (FEM) at the macroscale. In this approach, a DEM‐based numerical constitutive law is embedded into a standard FEM formulation. In this regard, an exhaustive discussion is presented on how a 2D/3D granular assembly can be used to generate, step by step along the overall computation process, a consistent Numerically Homogenised Law. The paper also focuses on some recent developments including a comprehensive discussion of the efficiency of Newton‐like operators, the introduction of a regularisation technique at the macroscale by means of a second gradient framework, and the development of parallelisation techniques to alleviate the computational cost of the proposed approach. Some real‐scale problems taking into account the material spatial variability are illustrated, proving the numerical efficiency of the proposed approach and the benefit of a particle‐based strategy.

[1]  J. Roux,et al.  Quasistatic rheology and the origins of strain , 2009, 0901.2846.

[2]  René Chambon,et al.  Plastic continuum with microstructure, Local Second Gradient Theories for Geomaterials : Localization Studies , 2001 .

[3]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[4]  Vincent Richefeu,et al.  Experimental Validation of a Nonextensive Scaling Law in Confined Granular Media. , 2015, Physical review letters.

[5]  A. Argilaga FEMxDEM double scale approach with second gradient regularization applied to granular materials modeling , 2016 .

[6]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[7]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[8]  Ning Guo,et al.  Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils , 2016 .

[9]  Gioacchino Viggiani,et al.  Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics , 2011 .

[10]  René Chambon,et al.  Large strain finite element analysis of a local second gradient model: application to localization , 2002 .

[11]  F. Collin,et al.  Modeling the strain localization around an underground gallery with a hydro-mechanical double scale model; effect of anisotropy , 2017 .

[12]  N. P. Kruyt,et al.  Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials , 1998 .

[13]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[14]  FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization , 2017 .

[15]  Fred Collin,et al.  Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés , 2003 .

[16]  Jacques Desrues,et al.  1γ2ε' : a new shear apparatus to study the behavior of granular materials , 1992 .

[17]  Jidong Zhao,et al.  A Hierarchical Model for Cross-scale Simulation of Granular Media , 2013 .

[18]  Modeling of a cohesive granular materials by a multi-scale approach , 2013 .

[19]  E. Andò,et al.  Localisation Precursors in Geomaterials , 2017 .

[20]  David Marsan,et al.  Scale dependence and localization of the deformation of Arctic sea ice. , 2004, Physical review letters.

[21]  C. Prisco,et al.  Controllability, uniqueness and existence of the incremental response: A mathematical criterion for elastoplastic constitutive laws , 2011 .

[22]  Ning Guo,et al.  A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media , 2014 .

[23]  Ching S. Chang,et al.  Stability, bifurcation, and softening in discrete systems: A conceptual approach for granular materials , 2006, 1901.07340.

[24]  Ning Guo,et al.  Multiscale modeling and analysis of compaction bands in high-porosity sandstones , 2018 .

[25]  Gaël Combe,et al.  FEM×DEM multiscale modeling: Model performance enhancement from Newton strategy to element loop parallelization , 2018 .

[26]  Peter D. Lee,et al.  Variability in spatial distribution of mineral phases in the Lower Bowland Shale, UK, from the mm- to μm-scale: quantitative characterization and modelling , 2018 .

[27]  D. Caillerie,et al.  One-dimensional localisation studied with a second grade model , 1998 .

[28]  F. Collin,et al.  A FE2 modelling approach to hydromechanical coupling in cracking-induced localization problems , 2016 .

[29]  G. Midi,et al.  On dense granular flows , 2003, The European physical journal. E, Soft matter.

[30]  Christian Miehe,et al.  A framework for micro–macro transitions in periodic particle aggregates of granular materials , 2004 .

[31]  Gaël Combe,et al.  FEM × DEM modelling of cohesive granular materials: Numerical homogenisation and multi-scale simulations , 2014, Acta Geophysica.

[32]  Takashi Kyoya,et al.  Global–local analysis of granular media in quasi-static equilibrium , 2003 .

[33]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[34]  M. Hicks,et al.  Efficient subset simulation for evaluating the modes of improbable slope failure , 2017 .

[35]  Hans Hagen,et al.  Visualization of Large and Unstructured Data Sets: Second workshop of the DFG's International Research Training Group "Visualization of Large and Unstructured Data Sets - Applications in Geospatial Planning, Modeling, and Engineering", September 9-11, 2007 Kaiserslautern, Germany , 2008, Visualization of Large and Unstructured Data Sets.

[36]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[37]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[38]  Ronaldo I. Borja,et al.  Micromechanics of granular media Part I: Generation of overall constitutive equation for assemblies of circular disks , 1995 .

[39]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[40]  Ronaldo I. Borja,et al.  Micromechanics of granular media. Part II : Overall tangential moduli and localization model for periodic assemblies of circular disks , 1997 .

[41]  Ning Guo,et al.  3D multiscale modeling of strain localization in granular media , 2016 .

[42]  Ning Guo,et al.  Multiscale insights into classical geomechanics problems , 2016 .

[43]  N. P. Kruyt,et al.  Kinematic and static assumptions for homogenization in micromechanics of granular materials , 2004 .

[44]  P. Anderson More is different. , 1972, Science.

[45]  V. Richefeu,et al.  An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear , 2012, 1208.0485.

[46]  Gaël Combe,et al.  Two-scale modeling of granular materials: a DEM-FEM approach , 2011 .

[47]  J. Desrues,et al.  A study of the influence of REV variability in double‐scale FEM ×DEM analysis , 2016 .

[48]  D. Caillerie,et al.  Restoring Mesh Independency in FEM-DEM Multi-scale Modelling of Strain Localization Using Second Gradient Regularization , 2017 .

[49]  Frédéric Collin,et al.  SWITCHING DEFORMATION MODES IN POST-LOCALIZATION SOLUTIONS WITH A QUASIBRITTLE MATERIAL , 2006 .

[50]  D. Caillerie,et al.  FEM × DEM Multi-scale Analysis of Boundary Value Problems Involving Strain Localization , 2014 .

[51]  Christian Miehe,et al.  Homogenization and two‐scale simulations of granular materials for different microstructural constraints , 2010 .

[52]  Serge Moto Mpong,et al.  A Parallel Computing Model for the Acceleration of a Finite Element Software , 2002, ISHPC.