Declustering of Clustered Preferential Sampling for Histogram and Semivariogram Inference

Abstract Measurements of attributes obtained more as a consequence of business ventures than sampling design frequently result in samplings that are preferential both in location and value, typically in the form of clusters along the pay. Preferential sampling requires preprocessing for the purpose of properly inferring characteristics of the parent population, such as the cumulative distribution and the semivariogram. Consideration of the distance to the nearest neighbor allows preparation of resampled sets that produce comparable results to those from previously proposed methods. A clustered sampling of size 140, taken from an exhaustive sampling, is employed to illustrate this approach.

[1]  Patrick Bogaert,et al.  On the Optimal Estimation of the Cumulative Distribution Function in Presence of Spatial Dependence , 1999 .

[2]  Ricardo A. Olea,et al.  Geostatistics for Engineers and Earth Scientists , 1999, Technometrics.

[3]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[4]  Eulogio Pardo-Igúzquiza,et al.  Normality Tests for Spatially Correlated Data , 2004 .

[5]  G. Bourgault Spatial declustering weights , 1997 .

[6]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .

[7]  Andrew Richmond,et al.  Two-point declustering for weighting data pairs in experimental variogram calculations , 2002 .

[8]  Clayton V. Deutsch,et al.  DECLUS: a FORTRAN 77 program for determining optimum spatial declustering weights , 1989 .

[9]  Julián M. Ortiz,et al.  Histogram and variogram inference in the multigaussian model , 2005 .

[10]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[11]  H. Omre The Variogram and its Estimation , 1984 .

[12]  N. Schofield Using the Entropy Statistic to infer Population Parameters from Spatially Clustered Sampling , 1993 .

[13]  A. Soares,et al.  Geostatistics Tróia '92 , 1993 .

[14]  Ricardo A. Olea,et al.  A six-step practical approach to semivariogram modeling , 2006 .

[15]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[16]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[17]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[18]  A. Journel Nonparametric estimation of spatial distributions , 1983 .