Learning in Parametric Modeling: Basic Concepts and Directions
暂无分享,去创建一个
[1] David L. Phillips,et al. A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.
[2] Thomas G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.
[4] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[5] Elie Bienenstock,et al. Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.
[6] H. Akaike. A new look at the statistical model identification , 1974 .
[7] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[8] Edward J. Wegman,et al. Statistical Signal Processing , 1985 .
[9] J.C. Principe,et al. From linear adaptive filtering to nonlinear information processing - The design and analysis of information processing systems , 2006, IEEE Signal Processing Magazine.
[10] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[11] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[12] Radford M. Neal. Assessing Relevance determination methods using DELVE , 1998 .
[13] Yonina C. Eldar,et al. Rethinking Biased Estimation , 2008 .
[14] David G. Stork,et al. Pattern Classification , 1973 .
[15] J. Friedman. Regularized Discriminant Analysis , 1989 .
[16] R. Tibshirani,et al. Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .
[17] Rabab K. Ward,et al. 14 FROM LINEAR ADAPTIVE FILTERING TO NONLINEAR INFORMATION PROCESSING , 2006 .
[18] Sylvain Arlot,et al. A survey of cross-validation procedures for model selection , 2009, 0907.4728.
[19] David Mackay,et al. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .
[20] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[21] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[22] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[23] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[24] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[25] R. Bellman. Dynamic programming. , 1957, Science.
[26] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[27] S. Larson. The shrinkage of the coefficient of multiple correlation. , 1931 .
[28] S. Fiske,et al. The Handbook of Social Psychology , 1935 .
[29] Sergios Theodoridis,et al. Introduction to Pattern Recognition: A Matlab Approach , 2010 .
[30] Dimitri P. Bertsekas,et al. Convex Analysis and Optimization , 2003 .
[31] H. Raiffa,et al. Applied Statistical Decision Theory. , 1961 .
[32] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[33] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[34] Yonina C. Eldar,et al. Rethinking biased estimation [Lecture Notes] , 2008, IEEE Signal Processing Magazine.
[35] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.