Analytical sensitivity computation using collocation method with non-uniform mesh discretisation for numerical solutions of optimal control problems

[1]  William W. Hager,et al.  Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2015, J. Optim. Theory Appl..

[2]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[3]  Panagiotis Tsiotras,et al.  Density Functions for Mesh Refinement in Numerical Optimal Control , 2011 .

[4]  Xinggao Liu,et al.  An effective pseudospectral optimization approach with sparse variable time nodes for maximum production of chemical engineering problems , 2017 .

[5]  Kok Lay Teo,et al.  MISER3 version 2 Constrained optimal control software , 1997 .

[6]  Eva Balsa-Canto,et al.  Dynamic optimization of chemical and biochemical processes using restricted second order information , 2001 .

[7]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[8]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[9]  Chao Xu,et al.  Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas , 2016, Commun. Nonlinear Sci. Numer. Simul..

[10]  K. Teo,et al.  The control parameterization enhancing transform for constrained optimal control problems , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[11]  G. Wozny,et al.  Generation of discrete first‐ and second‐order sensitivities for single shooting , 2012 .

[12]  Weihua Gui,et al.  A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems. , 2018, ISA transactions.

[13]  K. Teo,et al.  Switching time optimization for nonlinear switched systems: Direct optimization and the time-scaling transformation , 2014 .

[14]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[15]  Y. A. Liu,et al.  An effective computational algorithm for suboptimal singular and/or bang‐bang control II. Applications to nonlinear lumped and distributed systems , 1976 .

[16]  Pu Li,et al.  Improvement of state profile accuracy in nonlinear dynamic optimization with the quasi‐sequential approach , 2011 .

[17]  Pu Li,et al.  An Analytical Hessian and Parallel-Computing Approach for Efficient Dynamic Optimization Based on Control-Variable Correlation Analysis , 2015 .

[18]  Xin Yu,et al.  The approximation for the boundary optimal control problem of Burgers-Fisher equation with constraints , 2014, Appl. Math. Comput..

[19]  Lorenz T. Biegler,et al.  Simultaneous strategies for optimization of differential-algebraic systems , 1990 .

[20]  Jianghua Feng,et al.  A Novel Penalty Approach for Nonlinear Dynamic Optimization Problems With Inequality Path Constraints , 2014, IEEE Transactions on Automatic Control.

[21]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[22]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[23]  K. Teo,et al.  THE CONTROL PARAMETERIZATION METHOD FOR NONLINEAR OPTIMAL CONTROL: A SURVEY , 2013 .

[24]  Guang-Ren Duan,et al.  Control parameterization enhancing transform for optimal control of switched systems , 2006, Math. Comput. Model..

[25]  Shaun A. Forth An efficient overloaded implementation of forward mode automatic differentiation in MATLAB , 2006, TOMS.

[26]  P. Tsiotras,et al.  Trajectory Optimization Using Multiresolution Techniques , 2008 .

[27]  Matthias Knauer,et al.  Fast and save container cranes as bilevel optimal control problems , 2012 .

[28]  Stephen L. Campbell,et al.  Solving optimal control problems with control delays using direct transcription , 2016 .

[29]  Kok Lay Teo,et al.  Optimal parameter selection for nonlinear multistage systems with time-delays , 2014, Comput. Optim. Appl..

[30]  Liang Ma,et al.  An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times , 2018, Int. J. Control.

[31]  B. Fabien Some tools for the direct solution of optimal control problems , 1998 .

[32]  M. Dehghan,et al.  Distributed optimal control of the viscous Burgers equation via a Legendre pseudo‐spectral approach , 2016 .

[33]  Xinggao Liu,et al.  A Control Parameterization Approach with Variable Time Nodes for Optimal Control Problems , 2016 .

[34]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[35]  Yoshiyuki Sakawa,et al.  Optimal control of container cranes , 1981, Autom..

[36]  Shiming He,et al.  An adaptive pseudospectral method for constrained dynamic optimization problems in chemical engineering , 2016 .

[37]  Kurt Marti,et al.  Optimal control of dynamical systems and structures under stochastic uncertainty: Stochastic optimal feedback control , 2012, Adv. Eng. Softw..

[38]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[39]  Pu Li,et al.  A combined approach to nonlinear model predictive control of fast systems , 2010 .

[40]  Helen H. Lou,et al.  A probability distribution estimation based method for dynamic optimization , 2007 .

[41]  K. Teo,et al.  Control Parametrization Enhancing Technique for Solving a Special ODE Class with State Dependent Switch , 2003 .

[42]  Zhihua Xiong,et al.  Optimal Control of Fed-Batch Processes Based on Multiple Neural Networks , 2005, Applied Intelligence.

[43]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[44]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[45]  Kok Lay Teo,et al.  Optimal control problems with multiple characteristic time points in the objective and constraints , 2008, Autom..

[46]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[47]  Zhaohua Gong,et al.  Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data , 2018 .