Biodiversity analysis: issues, concepts, techniques

The paper responds to the question: How should one go about designing the statistical analysis of biodiversity if it had to be done across scales in time and space? The conceptual basis of the design is the definition of biodiversity as a convolution of two community components. One of the components is richness, the product of species evolution, and the other structure, the consequence of environmental sorting (biotic, physical). The method of choice takes information in the manner of frequency distributions, and decomposes the associated total diversity into additive components specific to the deemed sorting factors. Diversity quantities are supplied by the analysis by which the relative importance of sorting factors can be measured and the dynamic oscillations which they generate in diversity can be traced. Examples support the a priori idea that the velocity of compositional change in the community during the late quaternary period has co-varied closely with the specific components of Kolmogorov-type complexity, Anand's structural complexity and Renyi's entropy of order one. The paper explains what is involved and why is it important.

[1]  M. Schütz,et al.  Reconstruction of a long-term recovery process from pasture to forest , 2000 .

[2]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[3]  David D Kemp The greenhouse effect and global warming , 1994 .

[4]  E. H. Simpson Measurement of Diversity , 1949, Nature.

[5]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[6]  János Podani,et al.  Introduction to the exploration of multivariate biological data , 2000 .

[7]  László Orlóci,et al.  On hierarchical partitioning of an ecological complexity function , 2000 .

[8]  R. Dawkins The Blind Watchmaker , 1986 .

[9]  Denis Lachance,et al.  Forest Decline Concepts , 1992 .

[10]  David C. Schneider,et al.  Quantitative Ecology: Spatial and Temporal Scaling , 1994 .

[11]  L. Orlóci,et al.  Statistics in Ecosystem Survey: Computer Support for Process-Based Sample Stability Tests and Entropy/Information Inference , 1991 .

[12]  Madhur Anand,et al.  The Fundamentals of Vegetation Change - Complexity Rules , 2000 .

[13]  Simon A. Levin,et al.  Biodiversity: An Ecological Perspective , 1997 .

[14]  A. Rényi On Measures of Entropy and Information , 1961 .

[15]  L. Orlóci,et al.  On Character-Based Plant Community Analysis: Choice, Arrangement, Comparison , 1991 .

[16]  A W EDWARDS,et al.  A METHOD FOR CLUSTER ANALYSIS. , 1965, Biometrics.

[17]  László Orlóci,et al.  Multivariate Analysis in Vegetation Research , 1975 .

[18]  J. Wootton,et al.  PREDICTION IN COMPLEX COMMUNITIES: ANALYSIS OF EMPIRICALLY DERIVED MARKOV MODELS , 2001 .

[19]  L. Orlóci Prospects and expectations: reflections on a science in change , 2001 .

[20]  M. Anand,et al.  Chaotic dynamics in a multispecies community , 1997, Environmental and Ecological Statistics.

[21]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[22]  Robert V. O'Neill,et al.  IS IT TIME TO BURY THE ECOSYSTEM CONCEPT? (WITH FULL MILITARY HONORS, OF COURSE!)1 , 2001 .

[23]  László Orlóci,et al.  MARKOV CHAIN: A REALISTIC MODEL FOR TEMPORAL COENOSERE? , 1993 .

[24]  T. Czárán,et al.  Pattern, area and diversity: the importance of spatial scale in species assemblages , 1993 .

[25]  S. Levin Biodiversity: Interfacing Populations and Ecosystems , 1997 .

[26]  H. Balzter Markov chain models for vegetation dynamics , 2000 .

[27]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[28]  D. C. Glenn-Lewin,et al.  Markov models and succession: a test from a heathland in the Netherlands , 1985 .

[29]  R. P. McIntosh An Index of Diversity and the Relation of Certain Concepts to Diversity , 1967 .

[30]  V. M. Conway,et al.  Deciduous Forests of Eastern North America. , 1951 .

[31]  Calyampudi R. Rao Diversity and dissimilarity coefficients: A unified approach☆ , 1982 .

[32]  E. Box Macroclimate and Plant Forms , 1981, Tasks for Vegetation Science.

[33]  Syukuro Manabe,et al.  Transient Response of a Global Ocean-Atmosphere Model to a Doubling of Atmospheric Carbon Dioxide , 1990 .

[34]  John N. Rayner,et al.  Introduction to Spectral Analysis , 2005, Spectral Analysis for Univariate Time Series.

[35]  P. Waggoner,et al.  Transition Probabilities for a Forest , 1970, Nature.

[36]  T. Berry The dream of the earth , 1988 .

[37]  L. Orlóci,et al.  Character-based community analysis : the Theory and an Application Program. , 2004 .

[38]  Michael Taylor Diversity of life , 1994, Nature.

[39]  J G Daugman,et al.  Information Theory and Coding , 2005 .

[40]  N. Kenkel Fractal analysis of spatio-temporal dynamics in boreal forest landscapes , 1998 .

[41]  R. Whittaker Vegetation of the Siskiyou Mountains, Oregon and California , 1960 .

[42]  C. N.,et al.  Fractal analysis of spatio-temporal dynamics in boreal forest landscapes , 2007 .

[43]  F. Horváth,et al.  Thirty-Year-Changes in Some Forest Communities of Visegrádi Mts., Hungary , 1992 .

[44]  H. Delcourt,et al.  Long-Term Forest Dynamics of the Temperate Zone , 1987 .

[45]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[46]  M. Palmer,et al.  The Coexistence of Species in Fractal Landscapes , 1992, The American Naturalist.

[47]  Robert K. Peet,et al.  The Measurement of Species Diversity , 1974 .

[48]  Robert M. Gray,et al.  Entropy and Information , 1990 .

[49]  Brian H. McArdle,et al.  FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .

[50]  Madhur Anand,et al.  Complexity in Plant Communities: the Notion and Quantification , 1996 .

[51]  Alastair H. Fitter,et al.  7 – An Ecological Perspective , 2002 .

[52]  R. Routledge On Whittaker's Components of Diversity , 1977 .

[53]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[54]  Henry S. Horn Some Causes of Variety in Patterns of Secondary Succession , 1981 .

[55]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[56]  P. Juhász-Nagy,et al.  Information theory methods for the study of spatial processes and succession , 1983, Vegetatio.

[57]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[58]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[59]  D. H. Knight,et al.  Aims and Methods of Vegetation Ecology , 1974 .

[60]  M. B. Usher,et al.  Modelling ecological succession, with particular reference to Markovian models , 1981, Vegetatio.

[61]  L. Orlóci Pattern dynamics: an essay concerning principles, techniques, and applications , 2001 .

[62]  D. Mueller‐Dombois,et al.  Climate-diagram Maps , 1975 .

[63]  B. Tóthmérész On the characterization of scale-dependent diversity , 1998 .

[64]  P. Luckham,et al.  Forces between two adsorbed polyethylene oxide layers immersed in a good aqueous solvent , 1982, Nature.

[65]  László Orlóci,et al.  On randomization testing in vegetation science: multifactor comparisons of relevé groups , 1996 .

[66]  M. Palmer,et al.  Fractal geometry: a tool for describing spatial patterns of plant communities , 1988, Vegetatio.

[67]  D. McDowell Foreword , 1999 .

[68]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[69]  Pierre Legendre,et al.  DISTANCE‐BASED REDUNDANCY ANALYSIS: TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL EXPERIMENTS , 1999 .

[70]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[71]  L. Brillouin,et al.  Science and information theory , 1956 .

[72]  T. Allen,et al.  A hierarchical model for the complexity of plant communities , 1983 .

[73]  M. Poore The Use of Phytosociological Methods in Ecological Investigations: III. Practical Application , 1955 .