Using Multidimensional Clustering Based Collaborative Filtering Approach Improving Recommendation Diversity

In this paper, we present a hybrid recommendation approach for discovering potential preferences of individual users. The proposed approach provides a flexible solution that incorporates multidimensional clustering into a collaborative filtering recommendation model to provide a quality recommendation. This facilitates to obtain user clusters which have diverse preference from multi-view for improving effectiveness and diversity of recommendation. The presented algorithm works in three phases: data preprocessing and multidimensional clustering, choosing the appropriate clusters and recommending for the target user. The performance of proposed approach is evaluated using a public movie dataset and compared with two representative recommendation algorithms. The empirical results demonstrate that our proposed approach is likely to trade-off on increasing the diversity of recommendations while maintaining the accuracy of recommendations.

[1]  Gediminas Adomavicius,et al.  Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques , 2012, IEEE Transactions on Knowledge and Data Engineering.

[2]  Kartik Hosanagar,et al.  Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity , 2007, Manag. Sci..

[3]  Gediminas Adomavicius,et al.  Working Paper: Improving Recommendation Diversity Using Ranking-based Techniques Improving Recommendation Diversity Using Ranking-based Techniques , 2022 .

[4]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[5]  David McSherry,et al.  Explanation in Recommender Systems , 2005, Artificial Intelligence Review.

[6]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[7]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[8]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[9]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[10]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation.(Special Section: Recommender Systems) , 1997 .

[11]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[12]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[13]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[14]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[15]  Barry Smyth,et al.  Improving Recommendation Diversity , 2001 .

[16]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[17]  Mi Zhang,et al.  Avoiding monotony: improving the diversity of recommendation lists , 2008, RecSys '08.

[18]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[19]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[20]  Philip S. Yu,et al.  Redefining Clustering for High-Dimensional Applications , 2002, IEEE Trans. Knowl. Data Eng..

[21]  Ira Assent,et al.  Evaluating Clustering in Subspace Projections of High Dimensional Data , 2009, Proc. VLDB Endow..