Using Multidimensional Clustering Based Collaborative Filtering Approach Improving Recommendation Diversity
暂无分享,去创建一个
[1] Gediminas Adomavicius,et al. Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques , 2012, IEEE Transactions on Knowledge and Data Engineering.
[2] Kartik Hosanagar,et al. Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity , 2007, Manag. Sci..
[3] Gediminas Adomavicius,et al. Working Paper: Improving Recommendation Diversity Using Ranking-based Techniques Improving Recommendation Diversity Using Ranking-based Techniques , 2022 .
[4] John Riedl,et al. Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.
[5] David McSherry,et al. Explanation in Recommender Systems , 2005, Artificial Intelligence Review.
[6] Robin D. Burke,et al. Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.
[7] Gediminas Adomavicius,et al. Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.
[8] Huan Liu,et al. Subspace clustering for high dimensional data: a review , 2004, SKDD.
[9] John Riedl,et al. Explaining collaborative filtering recommendations , 2000, CSCW '00.
[10] Yoav Shoham,et al. Fab: content-based, collaborative recommendation.(Special Section: Recommender Systems) , 1997 .
[11] Hans-Peter Kriegel,et al. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.
[12] Taghi M. Khoshgoftaar,et al. A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..
[13] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[14] Jonathan L. Herlocker,et al. Evaluating collaborative filtering recommender systems , 2004, TOIS.
[15] Barry Smyth,et al. Improving Recommendation Diversity , 2001 .
[16] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[17] Mi Zhang,et al. Avoiding monotony: improving the diversity of recommendation lists , 2008, RecSys '08.
[18] George Karypis,et al. Item-based top-N recommendation algorithms , 2004, TOIS.
[19] Paul Resnick,et al. Recommender systems , 1997, CACM.
[20] Philip S. Yu,et al. Redefining Clustering for High-Dimensional Applications , 2002, IEEE Trans. Knowl. Data Eng..
[21] Ira Assent,et al. Evaluating Clustering in Subspace Projections of High Dimensional Data , 2009, Proc. VLDB Endow..