Interval Completion Is Fixed Parameter Tractable

We present an algorithm with runtime $O(k^{2k}n^3m)$ for the following NP-complete problem [M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979, problem GT35]: Given an arbitrary graph $G$ on $n$ vertices and $m$ edges, can we obtain an interval graph by adding at most $k$ new edges to $G$? This resolves the long-standing open question [H. Kaplan, R. Shamir, and R. E. Tarjan, SIAM J. Comput., 28 (1999), pp. 1906-1922; R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York, 1999; M. Serna and D. Thilikos, Bull. Eur. Assoc. Theory Comput. Sci. EATCS, 86 (2005), pp. 41-65; G. Gutin, S. Szeider, and A. Yeo, in Proceedings IWPEC 2006, Lecture Notes in Comput. Sci. 4169, Springer-Verlag, Berlin, 2006, pp. 60-71], first posed by Kaplan, Shamir, and Tarjan, of whether this problem was fixed parameter tractable. The problem has applications in profile minimization for sparse matrix computations [J. A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981; R. E. Tarjan, in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, 1976, pp. 3-22], and our results show tractability for the case of a small number $k$ of zero elements in the envelope. Our algorithm performs bounded search among possible ways of adding edges to a graph to obtain an interval graph and combines this with a greedy algorithm when graphs of a certain structure are reached by the search.

[1]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[2]  R. Sharan,et al.  Complexity classication of some edge modication problems , 1999 .

[3]  Pinar Heggernes,et al.  Computing Minimal Triangulations in Time O(nalpha log n) = o(n 2.376) , 2005, SIAM J. Discret. Math..

[4]  Kurt Mehlhorn,et al.  Certifying algorithms for recognizing interval graphs and permutation graphs , 2003, SODA '03.

[5]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[6]  Daniel Lokshtanov,et al.  Wheel-Free Deletion Is W[2]-Hard , 2008, IWPEC.

[7]  P. Heggernes,et al.  Computing minimal triangulations in time O(nα log n) = o(n2.376) , 2005, SODA '05.

[8]  Stefan Szeider,et al.  Fixed-Parameter Complexity of Minimum Profile Problems , 2007, Algorithmica.

[9]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[10]  Pinar Heggernes,et al.  Minimal Interval Completions , 2005, ESA.

[11]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[12]  Maria J. Serna,et al.  Parameterized Complexity for Graph Layout Problems , 2005, Bull. EATCS.

[13]  Jacobo Torán,et al.  The MINSUMCUT Problem , 1991, WADS.

[14]  R. Ravi,et al.  Ordering Problems Approximated: Single-Processor Scheduling and Interval Graph Completion , 1991, ICALP.

[15]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[16]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[17]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[18]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[21]  R. Tarjan Graph theory and Gaussian elimination. , 1975 .

[22]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[23]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[24]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[25]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[26]  Gerard J. Chang,et al.  The Profile Minimization Problem in Trees , 1994, SIAM J. Comput..

[27]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[28]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[29]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[30]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[31]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[32]  G. Dirac On rigid circuit graphs , 1961 .

[33]  Satish Rao,et al.  New Approximation Techniques for Some Linear Ordering Problems , 2005, SIAM J. Comput..

[34]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..