Properties of random nilpotent groups

We study random nilpotent groups of the form $G=N/\langle\langle R \rangle \rangle$, where $N$ is a non-abelian free nilpotent group with $m$ generators, and $R$ is a set of $r$ random relators of length $\ell$. We prove that the following holds asymptotically almost surely as $\ell\to \infty$: 1) If $r\leq m-2$, then the ring of integers $\mathbb{Z}$ is e-definable in $G/{it Is}(G_3)$, and systems of equations over $\mathbb{Z}$ are reducible to systems of equations over $G$ (hence, they are undecidable). Moreover, $Z(G)\leq {\it Is}(G')$, $G/G_3$ is virtually free nilpotent of rank $m-r$, and $G/G_3$ cannot be decomposed as the direct product of two non-virtually abelian groups. 2) If $r=m-1$, then $G$ is virtually abelian. 3) If $r= m$, then $G$ is finite. 4) If $r\geq m+1$, then $G$ is finite and abelian. In the last three cases, systems of equations are decidable in $G$.

[1]  H. Putnam,et al.  The Decision Problem for Exponential Diophantine Equations , 1961 .

[2]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[3]  A. L. Shmel’kin Polycyclic groups , 1968 .

[4]  L. Lipshitz,et al.  Diophantine Sets over Some Rings of Algebraic Integers , 1978 .

[5]  V. A. Roman'kov Universal theory of nilpotent groups , 1979 .

[6]  V. Roman’kov Width of verbal subgroups in solvable groups , 1982 .

[7]  A generalized theorem on freedom for pro-p-groups , 1986 .

[8]  Centroids of groups , 2000 .

[9]  M. Gromov,et al.  Random walk in random groups , 2003 .

[10]  Yann Ollivier,et al.  A January 2005 invitation to random groups , 2005, Ensaios Matemáticos.

[11]  D. Segal Words: Notes on Verbal Width in Groups , 2009 .

[12]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[13]  A. Myasnikov,et al.  Elementary coordinatization of finitely generated nilpotent groups , 2013, 1311.1391.

[14]  Moon Duchin,et al.  Equations in nilpotent groups , 2014, 1401.2471.

[15]  Moon Duchin,et al.  Random nilpotent groups I , 2015, 1506.01426.

[16]  A matrix model for random nilpotent groups , 2016, 1602.01454.

[17]  Alexei G. Myasnikov,et al.  Random nilpotent groups, polycyclic presentations, and Diophantine problems , 2017, Groups Complex. Cryptol..

[18]  Alexei G. Myasnikov,et al.  ω-STABILITY AND MORLEY RANK OF BILINEAR MAPS, RINGS AND NILPOTENT GROUPS , 2014, The Journal of Symbolic Logic.

[19]  First order rigidity of non-uniform higher rank arithmetic lattices , 2017, 1709.02766.