Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit
暂无分享,去创建一个
[1] Yuri Kozitsky,et al. Kawasaki Dynamics in Continuum: Micro- and Mesoscopic Descriptions , 2011, 1109.4754.
[2] Dmitri Finkelshtein,et al. Operator approach to Vlasov scaling for some models of spatial ecology , 2011 .
[3] Yuri Kozitsky,et al. Glauber Dynamics in Continuum: A Constructive Approach to Evolution of States , 2011 .
[4] Yuri G. Kondratiev,et al. Binary jumps in continuum. I. Equilibrium processes and their scaling limits , 2011, 1101.4765.
[5] E. Lytvynov,et al. A note on equilibrium Glauber and Kawasaki dynamics for permanental point processes , 2010, 1005.4537.
[6] Dmitri Finkelshtein,et al. Vlasov scaling for the Glauber dynamics in continuum , 2010 .
[7] Dmitri Finkelshtein,et al. Vlasov Scaling for Stochastic Dynamics of Continuous Systems , 2010 .
[8] Yuri G. Kondratiev,et al. Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.
[9] E. Lytvynov,et al. A note on equilibrium Glauber and Kawasaki dynamics for fermion point processes , 2007, math/0702338.
[10] Y. Kondratiev,et al. Diffusion approximation for equilibrium Kawasaki dynamics in continuum , 2007, math/0702178.
[11] M. Rockner,et al. Non-equilibrium stochastic dynamics in continuum: The free case , 2007, math/0701736.
[12] Yuri G. Kondratiev,et al. Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .
[13] Oleksandr Kutoviy,et al. On the metrical properties of the configuration space , 2006 .
[14] V. Kolokoltsov. Kinetic equations for the pure jump models of k-nary interacting particle systems , 2006 .
[15] M. Rockner,et al. Equilibrium Kawasaki dynamics of continuous particle systems , 2005, math/0503042.
[16] V. Belavkin,et al. On a general kinetic equation for many–particle systems with interaction, fragmentation and coagulation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] Tobias Kuna,et al. HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .
[18] J. Carstensen. One Component Systems , 2000 .
[19] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[20] Sergio Albeverio,et al. Analysis and Geometry on Configuration Spaces , 1998 .
[21] Time reversible and Gibbsian point processes, II. Markovian particle jump processes on a general phase space , 1982 .
[22] V. Belavkin,et al. Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov-Feller equations , 1981 .
[23] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. I , 1975 .
[24] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .
[25] A. Lenard,et al. Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .
[26] David Ruelle,et al. Superstable interactions in classical statistical mechanics , 1970 .
[27] R. Phillips,et al. Dissipative operators in a Banach space , 1961 .
[28] J. Doob. Stochastic processes , 1953 .