Some Observations on the Proof Theory of Second Order Propositional Multiplicative Linear Logic

We investigate the question of what constitutes a proof when quantifiers and multiplicative units are both present. On the technical level this paper provides two new aspects of the proof theory of MLL2 with units. First, we give a novel proof system in the framework of the calculus of structures. The main feature of the new system is the consequent use of deep inference, which allows us to observe a decomposition which is a version of Herbrand's theorem that is not visible in the sequent calculus. Second, we show a new notion of proof nets which is independent from any deductive system. We have "sequentialisation" into the calculus of structures as well as into the sequent calculus. Since cut elimination is terminating and confluent, we have a category of MLL2 proof nets. The treatment of the units is such that this category is star-autonomous.

[1]  Jean-Baptiste Joinet Completeness of MLL proof-nets w.r.t. weak distributivity , 2007, J. Symb. Log..

[2]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[3]  François Lamarche,et al.  On Proof Nets for Multiplicative Linear Logic with Units , 2004, CSL.

[4]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[5]  Inria Futurs,et al.  A System of Interaction and Structure IV: The Exponentials , 2007 .

[6]  Lutz Straßburger From Deep Inference to Proof Nets , 2005 .

[7]  Kai Brünnler Deep inference and symmetry in classical proofs , 2003 .

[8]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[9]  R. Blute,et al.  Natural deduction and coherence for weakly distributive categories , 1996 .

[10]  Rob J. van Glabbeek,et al.  Proof nets for unit-free multiplicative-additive linear logic , 2005, TOCL.

[11]  Dominic Hughes Simple multiplicative proof nets with units , 2005 .

[12]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[13]  Lutz Straßburger,et al.  From Proof Nets to the Free *-Autonomous Category , 2006 .

[14]  B. Liu,et al.  [Effect of BN52021 on platelet activating factor induced aggregation of psoriatic polymorphonuclear neutrophils]. , 1994, Zhonghua yi xue za zhi.

[15]  Alessio Guglielmi,et al.  A system of interaction and structure , 1999, TOCL.

[16]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[17]  C. Retoré,et al.  Réseaux et séquents ordonnés , 1993 .

[18]  Vikas Swarup,et al.  Q and A , 2005 .

[19]  Viktor Schuppan,et al.  Linear Encodings of Bounded LTL Model Checking , 2006, Log. Methods Comput. Sci..

[20]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[21]  Andre Scedrov,et al.  The Undecidability of Second Order Multiplicative Linear Logic , 1996, Inf. Comput..

[22]  Gordon D. Plotkin,et al.  Full completeness of the multiplicative linear logic of Chu spaces , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[23]  Lutz Straßburger,et al.  Non-commutativity and MELL in the Calculus of Structures , 2001, CSL.

[24]  Christine Leininger,et al.  Van de Wiele , 2005 .

[25]  Tom Gundersen,et al.  Normalisation Control in Deep Inference via Atomic Flows , 2007, Log. Methods Comput. Sci..

[26]  François Lamarche,et al.  From Proof Nets to the Free *-Autonomous Category , 2006, Log. Methods Comput. Sci..

[27]  François Lamarche,et al.  Proof Nets for the Lambek Calculus - an overview , 1998 .

[28]  Lutz Straßburger,et al.  Linear logic and noncommutativity in the calculus of structures , 2003 .

[29]  Gianluigi Bellin,et al.  Subnets of proof-nets in MLL - , 1995 .

[30]  Alwen Tiu,et al.  A Local System for Classical Logic , 2001, LPAR.

[31]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[32]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[33]  Samuel R. Buss,et al.  The Undecidability of k-Provability , 1991, Ann. Pure Appl. Log..

[34]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[35]  Dominic Hughes Simple free star-autonomous categories and full coherence , 2005 .

[36]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.