Optimal magnetoelectric coupling performance of Terfenol-D/PZT composites in resonance state under bias magnetic field

[1]  B. Zhu,et al.  Magnetoelectric laminate composites: an overview of methods for improving the DC and low-frequency response , 2018, Journal of Physics D: Applied Physics.

[2]  Y. Kim,et al.  Optimal configuration of magnetoelectric composites under various mechanical boundary conditions , 2017 .

[3]  Ji Wang,et al.  Interlaminar stress analysis of magneto-electro-elastic composite layered laminates using a stress function based iterative approach , 2016 .

[4]  Ji Wang,et al.  Free edge stress prediction for magneto-electro-elastic laminates using a stress function based equivalent single layer theory , 2016 .

[5]  Yang Wang,et al.  A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites , 2015 .

[6]  J. Gutiérrez,et al.  Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites , 2015 .

[7]  D. Xie,et al.  Length dependence of the resonant magnetoelectric effect in Ni/Pb(Zr,Ti)O3/Ni long cylindrical composites , 2014 .

[8]  C. Nan,et al.  Temperature dependence of magnetoelectric coupling in FeBSiC/PZT/FeBSiC laminates , 2014 .

[9]  F. Fang,et al.  Magnetoelectric coupling of laminated composites under combined thermal and magnetic loadings , 2012 .

[10]  Kai Xu,et al.  Giant magnetoelectric torque effect and multicoupling in two phases ferromagnetic/piezoelectric system , 2011 .

[11]  D. Viehland,et al.  Enhanced sensitivity to direct current magnetic field changes in Metglas/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminates , 2011 .

[12]  Sicong Shan,et al.  A multipeak phenomenon of magnetoelectric coupling in Terfenol-D/P(VDF-TrFE)/Terfenol-D laminates , 2010 .

[13]  C. Vaz,et al.  Temperature dependence of the magnetoelectric effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures , 2010 .

[14]  V. Petrov,et al.  Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency and electromechanical resonance ranges , 2010 .

[15]  A. Volinsky,et al.  Geometry effects on magnetoelectric performance of layered Ni/PZT composites , 2009 .

[16]  X. Chen,et al.  Magnetoelectric characteristics of a dual-mode magnetostrictive/piezoelectric bilayered composite , 2008 .

[17]  A. Volinsky,et al.  Giant magnetoelectric effect in Ni–lead zirconium titanate cylindrical structure , 2008 .

[18]  Ping Li,et al.  Resonant magnetoelectric response of magnetostrictive/piezoelectric laminate composite in consideration of losses , 2008 .

[19]  S. Dong,et al.  Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings , 2004 .

[20]  S. Dong,et al.  Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse–transverse modes , 2004 .

[21]  K. Senapati,et al.  Miniature Hall sensor based ac susceptometer for measurements of vortex and superfluid dynamics in superconducting films , 2004 .

[22]  G. Srinivasan,et al.  Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites , 2003, cond-mat/0306513.

[23]  Jungho Ryu,et al.  Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials , 2002 .

[24]  C. Nan,et al.  Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. , 1994, Physical review. B, Condensed matter.