A Pseudospectral Method for Fractional Optimal Control Problems
暂无分享,去创建一个
[1] P. Borwein,et al. Polynomials and Polynomial Inequalities , 1995 .
[2] I. Michael Ross,et al. On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems , 2007 .
[3] M. Dehghan,et al. The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems , 2011 .
[4] George E. Karniadakis,et al. Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..
[5] Agnieszka B. Malinowska,et al. Advanced Methods in the Fractional Calculus of Variations , 2015 .
[6] William W. Hager,et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..
[7] Siddhartha Sen,et al. Free final time fractional optimal control problems , 2014, J. Frankl. Inst..
[8] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[9] William W. Hager,et al. Convergence of a Gauss Pseudospectral Method for Optimal Control , 2012 .
[10] Qi Gong,et al. Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..
[11] Yangquan Chen,et al. Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .
[12] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[13] Delfim F. M. Torres,et al. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term , 2013, 1305.1859.
[14] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[15] Delfim F. M. Torres,et al. A discrete method to solve fractional optimal control problems , 2014, 1403.5060.
[16] H. Srivastava,et al. THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .
[17] Justin Ruths,et al. Convergence of a pseudospectral method for optimal control of complex dynamical systems , 2011, IEEE Conference on Decision and Control and European Control Conference.
[18] Delfim F. M. Torres,et al. Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..
[19] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[20] Tamás Erdélyi,et al. Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .
[21] Riewe,et al. Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[22] S. Pooseh. Computational Methods in the Fractional Calculus of Variations , 2013, 1312.4064.
[23] O. P. Agrawal,et al. General formulation for the numerical solution of optimal control problems , 1989 .
[24] William W. Hager,et al. Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..
[25] Shahrokh Esmaeili,et al. Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials , 2011, Comput. Math. Appl..
[26] Zaid M. Odibat,et al. Generalized Taylor's formula , 2007, Appl. Math. Comput..
[27] I. Podlubny. Fractional differential equations , 1998 .
[28] I. Michael Ross,et al. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .
[29] O. Agrawal. A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .
[30] Dumitru Baleanu,et al. A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.
[31] William W. Hager,et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..
[32] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[33] Agnieszka B. Malinowska,et al. Introduction to the Fractional Calculus of Variations , 2012 .