A Pseudospectral Method for Fractional Optimal Control Problems

In this article, a direct pseudospectral method based on Lagrange interpolating functions with fractional power terms is used to solve the fractional optimal control problem. As most applied fractional problems have solutions in terms of the fractional power, using appropriate characteristic nodal-based functions with suitable power leads to a more accurate pseudospectral approximation of the solution. The Lagrange interpolating functions and their fractional derivatives belong to the Müntz space; such functions are employed to show that a relationship exists between the Karush–Kukn–Tucker conditions associated with nonlinear programming and the first optimal necessary conditions. Furthermore, the convergence of the method is investigated. The obtained numerical results are an indication of the behavior of the algorithm.

[1]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[2]  I. Michael Ross,et al.  On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems , 2007 .

[3]  M. Dehghan,et al.  The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems , 2011 .

[4]  George E. Karniadakis,et al.  Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..

[5]  Agnieszka B. Malinowska,et al.  Advanced Methods in the Fractional Calculus of Variations , 2015 .

[6]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[7]  Siddhartha Sen,et al.  Free final time fractional optimal control problems , 2014, J. Frankl. Inst..

[8]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[9]  William W. Hager,et al.  Convergence of a Gauss Pseudospectral Method for Optimal Control , 2012 .

[10]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[11]  Yangquan Chen,et al.  Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .

[12]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[13]  Delfim F. M. Torres,et al.  Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term , 2013, 1305.1859.

[14]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[15]  Delfim F. M. Torres,et al.  A discrete method to solve fractional optimal control problems , 2014, 1403.5060.

[16]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[17]  Justin Ruths,et al.  Convergence of a pseudospectral method for optimal control of complex dynamical systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[18]  Delfim F. M. Torres,et al.  Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..

[19]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[20]  Tamás Erdélyi,et al.  Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .

[21]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  S. Pooseh Computational Methods in the Fractional Calculus of Variations , 2013, 1312.4064.

[23]  O. P. Agrawal,et al.  General formulation for the numerical solution of optimal control problems , 1989 .

[24]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..

[25]  Shahrokh Esmaeili,et al.  Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials , 2011, Comput. Math. Appl..

[26]  Zaid M. Odibat,et al.  Generalized Taylor's formula , 2007, Appl. Math. Comput..

[27]  I. Podlubny Fractional differential equations , 1998 .

[28]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[29]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[30]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[31]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[32]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[33]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .