From rifting to emplacement: Variable mantle melting preserved in the central Palawan Ophiolite peridotites, Philippines

[1]  Tetsuo Kawakami,et al.  Mixing, fluid infiltration, leaching, and deformation (MILD) processes on the slab-mantle wedge interface at high T and P conditions: Records from the Dalrymple Amphibolite, Philippines , 2022, Chemical Geology.

[2]  Tetsuo Kawakami,et al.  The slab–mantle wedge interface of an incipient subduction zone: Insights from the P–T–D evolution and petrological characteristics of the Dalrymple Amphibolite, Palawan Ophiolite, Philippines , 2021, Journal of Metamorphic Geology.

[3]  K. Tani,et al.  Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea , 2021, Tectonophysics.

[4]  T. Morishita,et al.  Origin of the basal lherzolite of the Muslim Bagh Ophiolite, Pakistan, deduced from the trace element characteristics of clinopyroxene , 2021, Geological Journal.

[5]  K. Michibayashi,et al.  Temporal and spatial mineralogical changes in clasts from Mariana serpentinite mud volcanoes: Cooling of the hot forearc-mantle at subduction initiation , 2021 .

[6]  A. Tamura,et al.  Remarkably fresh abyssal peridotites from Sibuyan island, Romblon Island Group, Philippines: Markers of young arc-continent collision , 2021 .

[7]  T. Morishita,et al.  Slab‐fluid metasomatism in the Early Paleozoic forearc mantle deduced from the Motai serpentinites, South Kitakami Belt, northeast Japan , 2021, Island Arc.

[8]  J. Gabo‐Ratio,et al.  Consumed tectonic plates in Southeast Asia: Markers from the Mesozoic to early Cenozoic stratigraphic units in the northern and central Philippines , 2020 .

[9]  G. Yumul,et al.  Mesozoic rock suites along western Philippines: Exposed proto-South China Sea fragments? , 2020 .

[10]  T. Morishita,et al.  Melt-rock interaction in the subarc mantle: records from the plagioclase peridotites of the southern Palawan Ophiolite, Philippines , 2020 .

[11]  S. Reddy,et al.  Cr-spinel records metasomatism not petrogenesis of mantle rocks , 2019, Nature Communications.

[12]  C. Dimalanta,et al.  Petrogenesis of ultramafic-mafic clasts in the Dos Hermanos Mélange, Ilocos Norte: Insights to the evolution of western Luzon, Philippines , 2019, Journal of Asian Earth Sciences.

[13]  A. McCarthy,et al.  Evidence for ancient fractional melting, cryptic refertilization and rapid exhumation of Tethyan mantle (Civrari Ophiolite, NW Italy) , 2019, Contributions to Mineralogy and Petrology.

[14]  M. Miura,et al.  Abyssal Peridotite as a Component of Forearc Mantle: Inference from a New Mantle Xenolith Suite of Bankawa in the Southwest Japan Arc , 2018, Minerals.

[15]  A. Tamura,et al.  Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines , 2018, Minerals.

[16]  R. Arculus,et al.  Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc , 2018 .

[17]  G. Yumul,et al.  Petrological and geochemical characteristics of the Samar Ophiolite ultramafic section: implications on the origins of the ophiolites in Samar and Leyte islands, Philippines , 2018 .

[18]  Katherine A. Kelley,et al.  Forearc Peridotites from Tonga Record Heterogeneous Oxidation of the Mantle following Subduction Initiation , 2017 .

[19]  C. Rasoazanamparany,et al.  Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology , 2016, Proceedings of the National Academy of Sciences.

[20]  J. Warren Global variations in abyssal peridotite compositions , 2016 .

[21]  E. Takazawa,et al.  Across-arc Variations in Geochemistry of Oligocene to Quaternary Basalts from the NE Japan Arc: Constraints on Source Composition, Mantle Melting and Slab Input Composition , 2015 .

[22]  A. Ueda,et al.  Melt extraction and metasomatism recorded in basal peridotites above the metamorphic sole of the northern Fizh massif, Oman ophiolite , 2015 .

[23]  Jiabiao Li,et al.  Deep structures of the Palawan and Sulu Sea and their implications for opening of the South China Sea , 2014 .

[24]  C. Carranza,et al.  Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: Evidence from onshore structural and offshore seismic data , 2014 .

[25]  Chenguang Sun,et al.  An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites , 2014 .

[26]  A. Tamura,et al.  Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity , 2014 .

[27]  J. Hermann,et al.  Petrology and geochemistry of the crust–mantle boundary in a nascent arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific , 2013 .

[28]  S. Arai,et al.  Petrology and chemistry of basal lherzolites above the metamorphic sole from Wadi Sarami central Oman ophiolite , 2013 .

[29]  T. Morishita,et al.  Clinopyroxenes in high-P metaperidotites from Happo-O'ne, central Japan: Implications for wedge-transversal chemical change of slab-derived fluids , 2010 .

[30]  J. Milsom,et al.  The gravity fields of Palawan and New Caledonia: insights into the subsurface geometries of ophiolites , 2009, Journal of the Geological Society.

[31]  G. Yumul,et al.  Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: A review , 2009 .

[32]  M. Styles,et al.  Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–FeIII systematics in chrome–spinel , 2009 .

[33]  J. Shervais,et al.  Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California , 2008 .

[34]  A. Tamura,et al.  Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites , 2008 .

[35]  Y. Lagabrielle,et al.  Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge , 2008 .

[36]  S. Arai,et al.  Insights into Petrological Characteristics of the Lithosphere of Mantle Wedge beneath Arcs through Peridotite Xenoliths: a Review , 2007 .

[37]  V. Okrugin,et al.  Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka , 2006 .

[38]  T. Masuda,et al.  Trace element characteristics of the fluid liberated from amphibolite-facies slab: Inference from the metamorphic sole beneath the Oman ophiolite and implication for boninite genesis , 2005 .

[39]  S. Lallemand,et al.  Plate motions, slab dynamics and back-arc deformation , 2005 .

[40]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[41]  Y. Niu Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges , 2004 .

[42]  A. Dijkstra,et al.  Geochemistry of the Othris Ophiolite, Greece: Evidence for Refertilization? , 2003 .

[43]  A. Kent,et al.  Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite , 2003 .

[44]  E. Bonatti,et al.  Mantle peridotites from the Bouvet Triple Junction Region, South Atlantic , 2003 .

[45]  A. Hofmann,et al.  Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites , 2001, Nature.

[46]  G. Yumul,et al.  Composition and provenance of the Upper Cretaceous to Eocene sandstones in Central Palawan, Philippines: Constraints on the tectonic development of Palawan , 2000 .

[47]  J. Hermann,et al.  Cooling History and Exhumation of Lower-Crustal Granulite and Upper Mantle (Malenco, Eastern Central Alps) , 2000 .

[48]  J. Pearce,et al.  Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting , 1998 .

[49]  Suhr,et al.  Basal lherzolites in the Bay of Islands Ophiolite: origin by detachment‐related telescoping of a ridge‐parallel melting gradient , 1998 .

[50]  C. H. Hall,et al.  High-Pressure and -Temperature Subophiolitic Kyanite—Garnet Amphibolites Generated during Initiation of Mid-Tertiary Subduction, Palawan, Philippines , 1995 .

[51]  S. Arai Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation , 1994 .

[52]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[53]  R. Berry,et al.  Oxygen fugacity controls in the Earth's upper mantle , 1990, Nature.

[54]  A. E. Ringwood,et al.  Phase Transformations and Differentiation in Subducted Lithosphere: Implications for Mantle Dynamics, Basalt Petrogenesis, and Crustal Evolution , 1982, The Journal of Geology.

[55]  N. Holloway The north Palawan block, Philippines : its relation to the Asian mainland and its role in the evolution of the South China Sea , 1981 .

[56]  O. Parlak,et al.  Petrology of ultramafic to mafic cumulate rocks from the Göksun (Kahramanmaraş) ophiolite, southeast Turkey , 2020 .

[57]  Keith Putirka,et al.  Thermometers and Barometers for Volcanic Systems , 2008 .

[58]  N. Abe,et al.  Mantle peridotites from the Western Pacific , 2007 .

[59]  A. Mitchell,et al.  Cenozoic evolution of the Philippine archipelago , 1986 .