Comparison of Isoelectronic Heterometallic and Homometallic Binuclear Cyclopentadienylmetal Carbonyls: The Iron–Nickel vs. the Dicobalt Systems
暂无分享,去创建一个
[1] H. Schaefer,et al. Homoleptic Carbonyls of the Second-Row Transition Metals: Evaluation of Hartree-Fock and Density Functional Theory Methods. , 2007, Journal of chemical theory and computation.
[2] J. Harvey,et al. Computational study of the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. , 2006, Physical chemistry chemical physics : PCCP.
[3] H. Schaefer,et al. Concerning the precision of standard density functional programs : Gaussian, molpro, nwchem, Q-chem, and gamess , 2006 .
[4] H. Schaefer,et al. Remarkable aspects of unsaturation in trinuclear metal carbonyl clusters: the triiron species Fe3(CO)n (n = 12, 11, 10, 9). , 2006, Journal of the American Chemical Society.
[5] Michael Bühl,et al. Geometries of Transition-Metal Complexes from Density-Functional Theory. , 2006, Journal of chemical theory and computation.
[6] Filipp Furche,et al. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. , 2006, The Journal of chemical physics.
[7] H. Schaefer,et al. Homonuclear transition-metal trimers. , 2005, The Journal of chemical physics.
[8] H. Schaefer,et al. Binuclear cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls. , 2005, Journal of the American Chemical Society.
[9] A. Sironi,et al. Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities , 2003 .
[10] R. King,et al. Binuclear Homoleptic Iron Carbonyls: Incorporation of Formal Iron−Iron Single, Double, Triple, and Quadruple Bonds, Fe2(CO)x (x = 9, 8, 7, 6) , 2000 .
[11] H. Schaefer,et al. Homonuclear 3d transition-metal diatomics: A systematic density functional theory study , 2000 .
[12] E. Davidson. Computational transition metal chemistry. , 2000, Chemical reviews.
[13] S. Niu,et al. Theoretical studies on reactions of transition-metal complexes. , 2000, Chemical reviews.
[14] T. Barckholtz,et al. ON THE POSSIBLE STRUCTURES OF MN2(CO)8 : THEORETICAL SUPPORT FOR AN UNPRECEDENTED ASYMMETRIC UNBRIDGED ISOMER , 1998 .
[15] Walter Thiel,et al. Theoretical study of the vibrational spectra of the transition metal carbonyls M(CO)6 [M=Cr, Mo, W], M(CO)5 [M=Fe, Ru, Os], and M(CO)4 [M=Ni, Pd, Pt] , 1995 .
[16] Hans Peter Lüthi,et al. Binding energies, molecular structures, and vibrational frequencies of transition metal carbonyls using density functional theory with gradient corrections , 1994 .
[17] G. Frenking,et al. Structures and Bond Energies of the Transition Metal Hexacarbonyls M(CO)6 (M = Cr, Mo, W). A Theoretical Study , 1994 .
[18] D. Powell,et al. Synthesis and reactions of rhenium complex Cp*(CO)2Re:Re(CO)2Cp* , 1991 .
[19] E. Sappa,et al. Synthesis and crystal structure of (η5-C5H5)NiFe3(CO)7(μ-PPh2)(μ4,η2-HCCPri): a butterfly cluster with an unprecedented metal core stoichiometry , 1989 .
[20] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[21] J. Perdew,et al. Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole. , 1985, Physical review letters.
[22] B. A. Wilson,et al. Dinuclear, 18-electron species having a triplet ground state: isolation, characterization, and crystal structure of photogenerated (.eta.5-C5Me5)2Fe2(.mu.-CO)3 , 1985 .
[23] P. Siegbahn,et al. The effect of electron correlation on the metal-ligand interaction in iron pentacarbonyl (Fe(CO)5) , 1985 .
[24] D. Golden,et al. Organometallic bond dissociation energies: laser pyrolysis of iron pentacarbonyl, chromium hexacarbonyl, molybdenum hexacarbonyl, and tungsten hexacarbonyl , 1984 .
[25] W. Herrmann,et al. Syntheses of Metal Carbonyls, XVI1). Metal‐Metal Multiple Bonds: Synthesis, Crystal and Molecular Structure of Tri‐μ‐carbonyl‐bis[(η5‐pentamethylcyclopentadienyl)manganese](Mn ≡ Mn) – The First Manganese‐Manganese Triple Bond , 1984 .
[26] W. C. Lineberger,et al. Laser photoelectron spectrometry of Ni(CO)n-, n = 1-3 , 1982 .
[27] W. Graham,et al. Synthesis and reactions of dicarbonyl(.eta.-cyclopentadienyl)dihydridorhenium(III) , 1982 .
[28] H. Vahrenkamp,et al. Reaktivität von Metall‐Metall‐Bindungen. Bildung und Zerfall einfacher Metallcarbonyl‐Zweikernkomplexe als Gleichgewichtsreaktion , 1980 .
[29] Diane M. Hood,et al. Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4 , 1979 .
[30] T. Iijima,et al. Nickel tetracarbonyl, Ni(CO)4. I. Molecular structure by gaseous electron diffraction. II. Refinement of quadratic force field , 1979 .
[31] F. Cotton,et al. Crystal and molecular structure of bis(pentamethylcyclopentadienyl)dicarbonyldicobalt , 1979 .
[32] F. Cotton,et al. DI(η5-cyclopentadienyl)pentacarbonyldivanadium. A prototypal example of semibridging carbonyl groups , 1978 .
[33] M. Curtis,et al. Molecular structure of dicyclopentadienyltetracarbonyldimolybdenum(Mo.tplbond.Mo). Semibridging carbonyls as four-electron donors in complexes with metal-metal multiple bonds , 1978 .
[34] M. Curtis,et al. The Crystal and Molecular Structure of Bis(cyclopentadienyldicarbonylchromium) (CrCr) , 1978 .
[35] K. Peter,et al. Photochemistry of η5 cylclopentadienylcobalt) tricarbonyl, tris(η5-cyclopentadienylcobalt monocarbonyl) and tetra(η5-cyclopentadienylcobalt) dicarbonyl* , 1975 .
[36] H. Yamazaki,et al. Chemistry of mixed transition-metal complexes : II. Preparation of mixed transition-metal μ-diphenylphosphido complexes☆ , 1971 .
[37] H. Yamazaki,et al. Chemistry of mixed transition-metal complexes : IV. Preparation of tertiary phosphine derivatives of carbonyl-π-cyclopentadienyliron-μ-dicarbonyl-π-cyclopentadienylnickel☆ , 1971 .
[38] T. H. Dunning. Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .
[39] S. Huzinaga,et al. Gaussian‐Type Functions for Polyatomic Systems. II , 1970 .
[40] A. Wachters,et al. Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .
[41] R. King,et al. Organometallic chemistry of the transition metals XXI. Some π-pentamethylcyclopentadienyl derivatives of various transition metals , 1967 .
[42] G. Schreckenbach,et al. A Reassessment of the First Metal-Carbonyl Dissociation Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a Quasirelativistic Density Functional Method , 1995 .
[43] M. Wrighton,et al. Photochemistry of (.eta.5-C5H5)2M2(CO)3 (M = Co, Rh) in low-temperature organic glasses: generation of [(.eta.5-C5H5)M(.mu.-CO)]2 , 1986 .
[44] J. Howard,et al. Heteronuclear unsaturated di- and tri-nuclear metal complexes; crystal structures of [CoRh(-CO)2(?-C5Me5)2] and [Rh2(-CO)2(?-C5Me5)2] , 1983 .
[45] A. Poë,et al. Kinetics of substitution and oxidative elimination reactions of pentacarbonylruthenium(0) , 1980 .
[46] A. R. Manning,et al. Infrared spectra and structures of di-µ-carbonyl-(π-cyclopentadienylnickelio)carbonyl-π-cyclopentadienyliron(Ni–Fe), (π-C5H5)2FeNi(CO)3 and di-µ-carbonyl-bis-(π-cyclopentadienylnickel)(Ni–Ni), [(π-C5H5)Ni(CO)]2 , 1971 .
[47] J. Tilney-Bassett. 915. Tricarbonylcyclopentadienyliron-cyclopentadienylnickel and some new cyclopentadienylnickel-irontricarbonyl–acetylene complexes , 1963 .