Slip Effects in Capillary and Parallel Disk Torsional Flows of Highly Filled Suspensions

The shear viscosity material function of a highly filled suspension consisting of a Newtonian poly(butadiene acrylonitrile acrylic acid terpolymer) matrix, PBAN, mixed with an ammonium sulfate filler at 60% by volume was studied. Both capillary and parallel disk torsional flows were employed. The rheological characterization revealed strong slip of the suspension at the walls over a broad range of shear stresses in both types of flows. The slip velocity increased approximately linearly with the shear stress. In capillary flows, above a critical shear stress, flow took place in a pluglike manner, owing to slip at the wall. The experimental findings were further elucidated to determine the slip layer thickness and the apparent shear viscosity behavior of highly filled suspensions at high shear stress at the wall values. It was concluded that the slip effects dominate the flow of highly filled suspensions and the true flow and deformation characteristics of the highly filled suspensions may be overshadowed b...