Particle Based Plasma Simulation for an Ion Engine Discharge Chamber

A particle-based model with a Monte Carlo collision model has been developed to study the plasma inside the discharge chamber of an ion engine. This model tracks five major particle types inside the discharge chamber in detail: xenon neutrals, singly charged xenon ions, doubly charged xenon ions, secondary electrons, and primary electrons. Both electric and magnetic field effects are included in the calculation of the charged particle's motion. The electric fields inside the discharge chamber are computed using a new approach. Also, detailed particle collision mechanisms are enabled. Validation of this computational model has been made on NASA's three-ring Solar Electric Propulsion Technology Application Readiness Program discharge chamber, at the 2.29 kW input power, 1.76 A beam current, and 1100 V beam voltage operating condition. Comparisons of numerical simulation results with experimental measurements are found to have good agreement. The computed ion beam current differs from experiments by 1% and the computed discharge current differs from experiments by 22%. The plasma ion production cost compares within 7% and the beam ion production cost compares within 16% of the experimental values. The overall computed thruster efficiency is found to differ from experiments by 11 %. In addition, steady-state results are given for particle number density distributions, kinetic energy, particle energy loss mechanisms, and current density collected at the chamber walls.

[1]  Herbert M. Urbassek,et al.  Particle-in-cell study of charge-state segregation in expanding plasmas due to three-body recombination , 2004 .

[2]  James Menart,et al.  Ion Engine Discharge Chamber Plasma Modeling Using a 2-D PIC Simulation , 2006 .

[3]  Keith Miller,et al.  DYNAMIC ADI METHODS FOR ELLIPTIC EQUATIONS , 1979 .

[4]  Matthew T. Domonkos,et al.  A Particle and Energy Balance Model of the Orificed Hollow Cathode , 2002 .

[5]  James E. Polk,et al.  In-flight performance of the NSTAR ion propulsion system on the Deep Space One mission , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[6]  Paul J. Wilbur,et al.  Phenomenological Model Describing Orificed, Hollow Cathode Operation , 1983 .

[7]  James S. Sovey Improved ion containment using a ring-cusp ion thruster , 1984 .

[8]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[9]  Paul J. Wilbur,et al.  Finite element analysis of plasma flows in cusped discharge chambers , 1991 .

[10]  J. R. Beattie,et al.  Model for computing volume-averaged plasma properties in electron-bombardment ion thrusters , 1989 .

[11]  John W. Luginsland,et al.  Virtual cathode formation due to electromagnetic transients , 1998 .

[12]  W. Kauppila,et al.  Measurements of total scattering cross sections for low-energy positrons and electrons colliding with krypton and xenon , 1980 .

[13]  L T Sin Fai Lam,et al.  Relativistic effects in electron scattering by atoms. III. Elastic scattering by krypton, xenon and radon , 1982 .

[14]  M. Hayashi Determination of electron-xenon total excitation cross-sections, from threshold to 100 eV, from experimental values of Townsend's α , 1983 .

[15]  Michael J. Patterson,et al.  NASA 30 Cm Ion Thruster Development Status , 1994 .

[16]  A. A. Batishcheva,et al.  Adaptively Meshed Fully -Kinetic PIC -Vlasov Model For Near Vacuum Hall Thrusters , 2006 .

[17]  John P. Verboncoeur,et al.  Symmetric spline weighting for charge and current density in particle simulation , 2001 .

[18]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[19]  James E. Polk,et al.  Performance characteristics of the NSTAR ion thruster during an on-going long duration ground test , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[20]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[21]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[22]  R. Wirz,et al.  Analytical Ion Thruster Discharge Performance Model , 2006 .

[23]  John P. Verboncoeur,et al.  Particle-in-cell simulations of plasma accelerators and electron-neutral collisions , 2001 .

[24]  B. H. Crichton,et al.  Gas discharge physics , 1996 .

[25]  James E. Polk,et al.  One-Dimensional Hollow Cathode Model , 2003 .

[26]  Richard E. Wirz,et al.  Discharge plasma processes of ring-cusp ion thrusters , 2005 .

[27]  J. E. Polk,et al.  The Effect of Engine Wear on Performance in the NSTAR 8000 Hour Ion Engine Endurance Test , 1997 .

[28]  Iain D. Boyd,et al.  Progress In NEXT Ion Optics Modeling , 2004 .

[29]  M. Cappelli,et al.  Comparison of hybrid Hall thruster model to experimental measurements , 2006 .

[30]  I. Mikellides,et al.  Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region , 2005 .

[31]  Giovanni Lapenta,et al.  Dynamic and selective control of the number of particles in kinetic plasma simulations , 1994 .

[32]  D. Goebel,et al.  Experimentally Determined Neutral Density and Plasma Parameters in a 30cm Ion Engine , 2004 .

[33]  M. Patterson,et al.  Validation of the NSTAR Ion Propulsion System on the Deep Space One Mission: Overview and Initial Results , 1999 .

[34]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[35]  Charles K. Birdsall,et al.  Physical and numerical methods of speeding up particle codes and paralleling as applied to RF discharges , 2000 .

[36]  Ioannis Kourakis,et al.  Discrete breather modes associated with vertical dust grain oscillations in dusty plasma crystals , 2005 .

[37]  Experimental investigation of discharge plasma magnetic confinement in the NSTASR ion thruster , 2005 .

[38]  James Menart,et al.  Particle Based Plasma Simulations for an Ion Engine Discharge Chamber , 2007 .

[39]  A. Fridman,et al.  Plasma Physics and Engineering , 2021 .

[40]  E. B. Saloman,et al.  Energy Levels and Observed Spectral Lines of Xenon, Xe I through Xe LIV , 2004 .

[41]  Yoshihiro Arakawa,et al.  Monte Carlo simulation of primary electron motions in cusped discharge chambers , 1990 .

[42]  C. Birdsall,et al.  Plasma Physics Via Computer , 1985 .

[43]  M. Bacal,et al.  Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source , 2004 .

[44]  Jan S. Hesthaven,et al.  High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids , 2006, J. Comput. Phys..

[45]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[46]  James E. Polk,et al.  The DS1 hyper-extended mission , 2002 .

[47]  Taiwo A. Ogunjobi Computational Study of Ring-Cusp Magnet Configurations that Provide Maximum Electron Confinement , 2006 .

[48]  D. Levandier,et al.  Xenon charge exchange cross sections for electrostatic thruster models , 2002 .

[49]  R. Wirz,et al.  Plasma processes of DC ion thruster discharge chambers , 2005 .

[50]  J. Polk,et al.  An overview of the Nuclear Electric Xenon Ion System (NEXIS) program , 2003 .

[51]  John R. Brophy,et al.  Implementation of the dawn ion propulsion system , 2005 .

[52]  John P. Verboncoeur,et al.  An object-oriented electromagnetic PIC code , 1995 .

[53]  Maheswaran Surendra,et al.  A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges , 1995 .

[54]  Michael J. Patterson,et al.  Titanium Optics for Ion Thrusters , 1999 .

[55]  B. Gilchrist,et al.  Electron Emission for Electric Propulsion: Reducing Power by Mitigating Space Charge Limits , 2004 .

[56]  John R. Anderson,et al.  An overview of the results from an 8200 hour wear test of the NSTAR ion thruster , 1999 .

[57]  J. Menart,et al.  Computational Study of Primary Electron Confinement by Magnetic Fields in the Discharge Chamber of an Ion Engine , 2007 .

[58]  Paul J. Wilbur,et al.  Ring cusp/hollow cathode discharge chamber performance studies. [ion propulsion] , 1988 .

[59]  Bell,et al.  Electron-impact ionization of In+ and Xe+ , 1993, Physical review. A, Atomic, molecular, and optical physics.

[60]  Paul J. Wilbur,et al.  Simple performance model for ring and line cusp ion thrusters , 1985 .

[61]  D. Goebel,et al.  Hollow cathode and keeper-region plasma measurements , 2005 .

[62]  John R. Brophy,et al.  Status of the Extended Life Test of the Deep Space 1 Flight Spare Ion Engine After 30,000 Hours of Operation , 2003 .

[63]  Thomas J. Stueber Ion Thruster Discharge Chamber Simulation in Three Dimension , 2005 .

[64]  Y. Arakawat IEPC-93-242 2198 PLASMA PARTICLE SIMULATION IN CUSPED ION THRUSTERS , 2008 .

[65]  Numerical Study of Beam Extraction Phenomena in an Ion Thruster , 2001 .

[66]  B. Lindsay,et al.  Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases , 2002 .

[67]  Francesco Taccogna,et al.  Self-similarity in Hall plasma discharges: Applications to particle models , 2005 .

[68]  I. Katz,et al.  Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes , 2004 .

[69]  James Menart,et al.  Computational Study of Magnet Placement on the Discharge Chamber of an Ion Engine , 2005 .

[70]  Dennis W. Hewett,et al.  Solution of simultaneous partial differential equations using dynamic ADI: Solution of the streamlined Darwin field equations , 1992 .

[71]  A. Gallimore,et al.  Erosion processes of the discharge cathode assembly of ring-cusp gridded ion thrusters , 2006 .

[72]  D. Herman The use of electrostatic probes to characterize the discharge plasma structure and identify discharge cathode erosion mechanisms in ring-cusp ion thrusters , 2005 .

[73]  A. Gallimore,et al.  Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR-Type Ion Engine During Beam Extraction , 2004 .

[74]  G. J. Parker,et al.  Comparison of collision rates in particle‐in‐cell, Monte Carlo, and Boltzmann codes , 1996 .

[76]  James Menart,et al.  PRIMARY ELECTRON MODELING IN THE DISCHARGE CHAMBER OF AN ION ENGINE , 2002 .

[77]  G. Sandonato,et al.  Magnetic confinement studies for performance enhancement of a 5-cm ion thruster , 1996 .

[78]  John R. Anderson,et al.  Results of an On-Going Long Duration Ground Test of the DS1 Flight Spare Engine , 1999 .

[79]  Dalle Mura,et al.  INVESTIGATION OF THE PHOTOELECTRIC WORK FUNCTION OF TITANIUM , 1952 .

[80]  James S. Sovey,et al.  PERFORMANCE CHARACTERISTICS OF THE DEEP SPACE 1 FLIGHT SPARE ION THRUSTER LONG DURATION TEST AFTER 21,300 HOURS OF OPERATION , 2003 .

[81]  Computational Study of the Effects of Cathode Placement, Electron Energy, and Magnetic Field Strength on the Confinement of Electrons , 2007 .

[82]  Raed Kafafy,et al.  Electric Propulsion Plume Modeling Using Parallel Supercomputers , 2006 .

[83]  A. Marek,et al.  2D PIC Simulation of the DC Discharge in Cylindrical Magnetron , 2005 .

[84]  D. Goebel,et al.  Neutral Density Measurements in an NSTAR Ion Thruster , 2006 .

[85]  G. Ganapathi,et al.  The Ion Propulsion System For Dawn , 2003 .

[86]  James E. Polk,et al.  Characterization of Hollow Cathode Performance and Thermal Behavior , 2006 .

[87]  James Joseph Szabo,et al.  Fully kinetic numerical modeling of a plasma thruster , 2001 .

[88]  George J. Williams,et al.  Low-current hollow cathode evaluation , 1999 .

[89]  John R. Brophy,et al.  NASA's Deep Space 1 ion engine , 2002 .

[90]  Michael J. Patterson,et al.  NEXT: NASA's Evolutionary Xenon Thruster , 2002 .

[91]  G. Raju Gaseous Electronics: Theory and Practice , 2005 .

[92]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[93]  Nearest-Grid-Point Interpolation in Gyrokinetic Particle-in-Cell Simulation , 2002 .

[94]  Kevin J. Bowers,et al.  Accelerating a paricle -in-cell simulation using a hybrid counting sort , 2001 .

[95]  Michael J. Patterson,et al.  Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission , 1997 .

[96]  M. Patterson,et al.  Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster , 2000 .

[97]  Jonathan L. Van Noord NEXT Ion Thruster Thermal Model , 2007 .

[98]  James Menart,et al.  Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber , 2004 .

[99]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[100]  James E. Polk,et al.  Ion Propulsion System ( NSTAR ) DS 1 Technology Validation Report , 2000 .

[101]  Z. Petrović,et al.  Electron excitation coefficients and cross sections for excited levels of argon and xenon ions , 2004 .

[102]  James E. Polk,et al.  Theoretical model of a hollow cathode plasma for the assessment of insert and keeper lifetimes , 2005 .

[103]  George C. Soulas Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster , 2001 .

[104]  J. Cary,et al.  VORPAL: a versatile plasma simulation code , 2004 .

[105]  I. Kolev,et al.  Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Michael J. Patterson,et al.  Performance of the NASA 30 cm Ion Thruster , 1993 .

[107]  James E. Polk,et al.  Three-Dimensional Particle Simulations of Ion-Optics Plasma Flow and Grid Erosion , 2003 .

[108]  Matthew T. O'Keefe,et al.  Program Analysis of Overlap Area Usage in Self-Similar Parallel Programs , 1997, LCPC.

[109]  J. R. Beattie,et al.  Characteristics of ring-cusp discharge chambers , 1991 .

[110]  R. Jahn,et al.  Physics of Electric Propulsion , 1968 .