Electrodes for nanodot-based gas sensors

Abstract A review with 86 references. Many gas sensors operate by detecting changes in the electrical properties of a sensing film material in the presence of a test gas. The influence of electrode material and geometry on sensitivity and selectivity, as studied by several workers, is discussed. Nanoparticulate sensing films are being reported increasingly, and may display greater sensitivity than films with larger particle sizes. However, gas sensor electrodes generally still have spacings of the order of microns. Some well-established and novel techniques available for fabricating electrodes with spacings similar to nanoparticle diameters are reviewed: photolithography, electron-beam lithography, scanning-probe methods, and ‘electrochemical narrowing’.

[1]  R. M. Silver,et al.  Direct writing with the scanning tunneling microscope , 1988 .

[2]  I. Rangelow,et al.  Bilayer resist process for exposure with low-voltage electrons (STM-lithography) , 1996 .

[3]  Fabrication of multiple nano-electrodes for molecular addressing using high-resolution electron beam lithography and their replication using soft imprint lithography , 2002 .

[4]  Marie Angelopoulos,et al.  Conducting polyanilines: Discharge layers for electron‐beam lithography , 1989 .

[5]  Sinclair S. Yee,et al.  Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors , 1995 .

[6]  J. Brezmes,et al.  Numerical simulation of the electrode geometry and position effects on semiconductor gas sensor response , 1998 .

[7]  Paul L. McEuen,et al.  Fabrication of metallic electrodes with nanometer separation by electromigration , 1999 .

[8]  W. W. Molzen,et al.  Proximity correction for electron beam lithography using a three‐Gaussian model of the electron energy distribution , 1989 .

[9]  G. Mladenov,et al.  A program for Monte Carlo simulation of penetration and scattering of accelerated electrons in multicomponent multilayer targets , 1996 .

[10]  P. Nellist,et al.  Direct electron beam writing of nanostructures using passivated gold clusters , 2000 .

[11]  I-Ming Hsing,et al.  An experimental study on high-temperature metallization for micro-hotplate-based integrated gas sensors , 2002 .

[12]  Gerd Sulz,et al.  Thin-film SnO2 sensor arrays controlled by variation of contact potential—a suitable tool for chemometric gas mixture analysis in the TLV range , 1997 .

[13]  Yulong Xu,et al.  Metal-semiconductor ohmic contact of SnO2-based ceramic gas sensors , 1997 .

[14]  Bernard Fay,et al.  Advanced optical lithography development, from UV to EUV , 2002 .

[15]  R. Palmer,et al.  Electron beam lithography in passivated gold nanoclusters , 2001 .

[16]  Norman F. Sheppard,et al.  Electrical conductivity measurements using microfabricated interdigitated electrodes , 1993 .

[17]  A. N. Broers,et al.  250‐Å linewidths with PMMA electron resist , 1978 .

[18]  S. Kowel,et al.  A capacitance sensor for on-line monitoring of ultrathin polymeric film growth , 1988 .

[19]  H. Ahmed,et al.  Comparison of MIBK/IPA and water/IPA as PMMA developers for electron beam nanolithography , 2002 .

[20]  L. P. Kouwenhoven,et al.  Nanometer-spaced electrodes with calibrated separation , 2002 .

[21]  David R. Allee,et al.  Direct nanometer scale patterning of SiO2 with electron beam irradiation through a sacrificial layer , 1990 .

[22]  Lloyd L. Chase,et al.  Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size , 1998 .

[23]  Wei Chen,et al.  Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron‐beam lithography and polymethylmethacrylate resist , 1993 .

[24]  Pietro Siciliano,et al.  Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol–gel thin film , 2001 .

[25]  David E. Williams,et al.  Theory of self-diagnostic sensor array devices using gas-sensitive resistors , 1995 .

[26]  Reuter,et al.  Fabrication of a quantum point contact by the dynamic plowing technique and wet-chemical etching , 2000, Ultramicroscopy.

[27]  D. Cumming,et al.  3 nm NiCr wires made using electron beam lithography and PMMA resist , 1996 .

[28]  Organized molecular assemblies for scanning probe microscope lithography , 2002 .

[29]  Geraint Williams,et al.  Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique , 1998 .

[30]  S. Chou,et al.  10 nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope , 1993 .

[31]  Hengpeng Wu,et al.  Nanocomposite resists for electron beam nanolithography , 2001 .

[32]  H. Nozawa,et al.  A nano-composite resist system: a new approach to nanometer pattern fabrication , 1997 .

[33]  K. Steiner,et al.  Contact and sheet resistance of SnO2 thin films from transmission-line model measurements , 1995 .

[34]  H. Seggern,et al.  Patterning of an electron beam resist with a scanning tunnelling microscope operating in air , 1995 .

[35]  Josef Binder,et al.  Fluid characterization using sensor elements based on interdigitated electrodes , 1996 .

[36]  P. Blanckenhagen,et al.  Atomic force microscope as a tool for metal surface modifications , 1995 .

[37]  Nongjian Tao,et al.  Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps , 2002 .

[38]  Douglas M. Preble,et al.  Sub-100 nm silicon on insulator complimentary metal–oxide semiconductor transistors by deep ultraviolet optical lithography , 2000 .

[39]  Y. Wada,et al.  Possible application of micromachine technology for nanometer lithography , 1998 .

[40]  Nongjian Tao,et al.  Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching , 2000 .

[41]  Wei He,et al.  Nanocomposite resist systems for next generation lithography , 2002 .

[42]  D. Kohl,et al.  Nanostructured semiconductor gas sensors to overcome sensitivity limitations due to percolation effects , 1999 .

[43]  Calvin F. Quate,et al.  Scanning probes as a lithography tool for nanostructures , 1997 .

[44]  R. Blaikie,et al.  Sub-diffraction-limited patterning using evanescent near-field optical lithography , 1999 .

[45]  N. C. MacDonald,et al.  A program for Monte Carlo simulation of electron energy loss in nanostructures , 1989 .

[46]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[47]  Nanometer scale patterning by scanning tunneling microscope assisted chemical vapour deposition , 2000 .

[48]  S. G. Ansari,et al.  Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles , 1997 .

[49]  David E. Williams,et al.  Tin dioxide gas sensors. Part 1.—Aspects of the surface chemistry revealed by electrical conductance variations , 1987 .

[50]  Monica Cǎldǎraru,et al.  Surface dynamics in tin dioxide-containing catalysts II. Competition between water and oxygen adsorption on polycrystalline tin dioxide , 1996 .

[51]  M. Goh,et al.  Orientational Ordering of Polymers by Atomic Force Microscope Tip-Surface Interaction , 1992, Science.

[52]  G. Faini,et al.  Novel nanofabrication method of high temperature metallic Coulomb blockade devices , 1996 .

[53]  D. B. Robinson,et al.  Controlled fabrication of metallic electrodes with atomic separation , 1999 .

[54]  C. Schönenberger,et al.  Fabrication of metallic nanowires with a scanning tunneling microscope , 1995 .

[55]  D. Rugar,et al.  Thermomechanical writing with an atomic force microscope tip , 1992 .

[56]  Eunsung Seo,et al.  Determination of proximity effect parameters and the shape bias parameter in electron beam lithography , 2000 .

[57]  Shazia Yasin,et al.  Nanolithography using ultrasonically assisted development of calixarene negative electron beam resist , 2001 .

[58]  R. Palmer,et al.  Mechanism of electron-beam writing in passivated gold nanoclusters , 2001 .

[59]  Roger Fabian W. Pease,et al.  Lift‐off metallization using poly(methyl methacrylate) exposed with a scanning tunneling microscope , 1988 .

[60]  L. Grella,et al.  Energy density function determination in very‐high‐resolution electron‐beam lithography , 1990 .

[61]  Zhan-guo Wang,et al.  Some new observation on the formation and optical properties of Cds clusters in zeolite-Y , 1996 .

[62]  S. Gwo Scanning probe oxidation of Si3N4 masks for nanoscale lithography, micromachining, and selective epitaxial growth on silicon , 2001 .

[63]  Toshiro Endo,et al.  Nanoscale layer removal of metal surfaces by scanning probe microscope scratching , 1995 .

[64]  R. Blaikie,et al.  Nanolithography using optical contact exposure in the evanescent near field , 1999 .

[65]  John F. Vetelino,et al.  Characterization of a WO3 thin film chlorine sensor , 2001 .

[67]  M. Lumbreras,et al.  Electrode nature effects on stannic oxide type layers prepared by electrostatic spray deposition , 1999 .

[68]  Franco Cerrina,et al.  Can proximity x-ray lithography print 35 nm features? Yes , 2001 .

[69]  G. K. Reeves,et al.  Obtaining the specific contact resistance from transmission line model measurements , 1982, IEEE Electron Device Letters.

[70]  G. Owen Methods for proximity effect correction in electron lithography , 1990 .

[71]  H. Craighead,et al.  Self‐assembled monolayer electron beam resist on GaAs , 1993 .

[72]  A. Broers,et al.  Electron beam lithography-Resolution limits , 1996 .

[73]  U. Kleineberg,et al.  Nanopatterning of Au absorber films on Mo/Si EUV multilayer mirrors by STM lithography in self-assembled monolayers , 2000 .

[74]  David L. Windt,et al.  Reduction imaging at 14 nm using multilayer‐coated optics: Printing of features smaller than 0.1 μm , 1990 .

[75]  G. D. Alley Interdigital Capacitors and Their Application to Lumped-Element Microwave Integrated Circuits , 1970 .

[76]  Richard J. Blaikie,et al.  70 nm Features on 140 nm period using evanescent near field optical lithography , 2000 .

[77]  Matthijs W. den Otter,et al.  Approximate expressions for the capacitance and electrostatic potential of interdigitated electrodes , 2002 .

[78]  Lloyd R. Harriott,et al.  Limits of lithography , 2001, Proc. IEEE.

[79]  T. Jenkins,et al.  Quantitative evaluation of electron beam writing in passivated gold nanoclusters , 2001 .

[80]  Harold G. Craighead,et al.  10‐nm linewidth electron beam lithography on GaAs , 1983 .

[81]  H. Beneking,et al.  The resolution of the inorganic electron beam resist LiF(AlF3) , 1994 .