Ubiquitous recommender systems

Ubiquitous recommender systems combine characteristics from ubiquitous systems and recommender systems in order to provide personalized recommendations to users in ubiquitous environments. Although not a new research area, ubiquitous recommender systems research has not yet been reviewed and classified in terms of ubiquitous research and recommender systems research, in order to deeply comprehend its nature, characteristics, relevant issues and challenges. It is our belief that ubiquitous recommenders can nowadays take advantage of the progress mobile phone technology has made in identifying items around, as well as utilize the faster wireless connections and the endless capabilities of modern mobile devices in order to provide users with more personalized and context-aware recommendations on location to aid them with their task at hand. This work focuses on ubiquitous recommender systems, while a brief analysis of the two fundamental areas from which they emerged, ubiquitous computing and recommender systems research is also conducted. Related work is provided, followed by a classification schema and a discussion about the correlation of ubiquitous recommenders with classic ubiquitous systems and recommender systems: similarities inevitably exist, however their fundamental differences are crucial. The paper concludes by proposing UbiCARS: a new class of ubiquitous recommender systems that will combine characteristics from ubiquitous systems and context-aware recommender systems in order to utilize multidimensional context modeling techniques not previously met in ubiquitous recommender systems.

[1]  Roy Want,et al.  System challenges for ubiquitous & pervasive computing , 2005, Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005..

[2]  Xingshe Zhou,et al.  Supporting Context-Aware Media Recommendations for Smart Phones , 2006, IEEE Pervasive Computing.

[3]  Nicole Novielli,et al.  Using Common Sense in Providing Personalized Recommendations in the Tourism Domain , 2009 .

[4]  Gerhard Friedrich,et al.  Recommender Systems: Recommendations in ubiquitous environments , 2010 .

[5]  Albrecht Schmidt,et al.  The design space of ubiquitous product recommendation systems , 2009, MUM.

[6]  Johan Koolwaaij,et al.  Context-Aware Recommendations in the Mobile Tourist Application COMPASS , 2004, AH.

[7]  Svetlana Domnitcheva,et al.  Location Modeling: State of the Art and Challenges , 2001 .

[8]  William G. Griswold,et al.  Challenge: ubiquitous location-aware computing and the "place lab" initiative , 2003, WMASH '03.

[9]  Jadwiga Indulska,et al.  Infrastructure for Pervasive Computing : Challenges 1 , 2001 .

[10]  Toine Bogers,et al.  Movie Recommendation using Random Walks over the Contextual Graph , 2010 .

[11]  Linas Baltrunas,et al.  Towards Time-Dependant Recommendation based on Implicit Feedback , 2009 .

[12]  Jenna Burrell,et al.  E-graffiti: evaluating real-world use of a context-aware system , 2002, Interact. Comput..

[13]  Jenna Burrell,et al.  Collectively defining context in a mobile, networked computing environment , 2001, CHI Extended Abstracts.

[14]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .

[15]  Diomidis Spinellis,et al.  Intelligent Cokes and Diapers: MyGROCER Ubiquitous Computing Environment , 2002 .

[16]  Francesco Ricci,et al.  Context-Dependent Items Generation in Collaborative Filtering , 2009 .

[17]  Jesper Kjeldskov,et al.  Exploring context-awareness for ubiquitous computing in the healthcare domain , 2007, Personal and Ubiquitous Computing.

[18]  Federica Cena,et al.  Integrating heterogeneous adaptation techniques to build a flexible and usable mobile tourist guide , 2006, AI Commun..

[19]  Mahadev Satyanarayanan,et al.  Pervasive computing: vision and challenges , 2001, IEEE Wirel. Commun..

[20]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.

[21]  Mark A. Neerincx,et al.  Field evaluation of a mobile location-based notification system for police officers , 2008, Mobile HCI.

[22]  Masanori Sugimoto,et al.  A user-adaptive city guide system with an unobtrusive navigation interface , 2009, Personal and Ubiquitous Computing.

[23]  Hans-Werner Gellersen,et al.  Beyond Prototypes: Challenges in Deploying Ubiquitous Systems , 2002, IEEE Pervasive Comput..

[24]  Kenta Oku,et al.  A Recommendation System Considering Users' Past / Current / Future Contexts , 2010 .

[25]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[26]  Florian Michahelles,et al.  A mobile product recommendation system interacting with tagged products , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[27]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[28]  Petra Fagerberg,et al.  GeoNotes: A Location-Based Information System for Public Spaces , 2003, Designing Information Spaces.

[29]  Manuel A. Pérez-Quiñones,et al.  Evaluation of a location-linked notes system , 2006, ACM-SE 44.

[30]  Yvonne Rogers,et al.  From spaces to places: emerging contexts in mobile privacy , 2009, UbiComp.

[31]  Jadwiga Indulska,et al.  Infrastructure for Pervasive Computing: Challenges , 2001, GI Jahrestagung.

[32]  Robert B. Johnston,et al.  Making ubiquitous computing available , 2009, CACM.

[33]  Kenta Oku,et al.  Context-Aware SVM for Context-Dependent Information Recommendation , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[34]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[35]  Stephan Karpischek,et al.  Mobile sales assistant: NFC for retailers , 2007, Mobile HCI.

[36]  Sarabjot Singh Anand,et al.  Context and customer behaviour in recommendation , 2009 .

[37]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[38]  Bradley N. Miller,et al.  MovieLens Unplugged: Experiences with a Recommender System on Four Mobile Devices , 2004 .

[39]  David W. McDonald,et al.  Ubiquitous Recommendation Systems , 2003, Computer.

[40]  Pablo Castells,et al.  Semantic contextualisation in a news recommender system , 2009 .

[41]  Barry Smyth,et al.  The Social Camera: Recommending Photo Composition Using Contextual Features , 2010 .

[42]  Marcos Aurélio Domingues,et al.  Using Contextual Information as Virtual Items on Top-N Recommender Systems , 2011, ArXiv.

[43]  Mark Bilandzic,et al.  CityFlocks: designing social navigation for urban mobile information systems , 2008, DIS '08.

[44]  Frank Allan Hansen,et al.  Ubiquitous annotation systems: technologies and challenges , 2006, HYPERTEXT '06.

[45]  Margaret Martonosi,et al.  Location-based trust for mobile user-generated content: applications, challenges and implementations , 2008, HotMobile '08.

[46]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[47]  Antonio Krüger,et al.  Exploring the Design Space of Context-aware Recommender Systems that Suggest Mobile Applications , 2010 .

[48]  Srinandan Dasmahapatra,et al.  Recommender Systems for the Semantic Web , 2006 .

[49]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[50]  Jan Marco Leimeister,et al.  Do Point of Sale RFID-Based Information Services Make a Difference? Analyzing Consumer Perceptions for Designing Smart Product Information Services in Retail Business , 2008, Electron. Mark..

[51]  Florian Michahelles,et al.  APriori: A Ubiquitous Product Rating System , 2008 .

[52]  Gregory D. Abowd,et al.  A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications , 2001, Hum. Comput. Interact..

[53]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[54]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.