Probing and lnterpreting the Porosity and Tortuosity Evolution of Li-O2 Cathodes on Discharge through a Combined Experimental and Theoretical Approach

[1]  Lauren E. Marbella,et al.  Three-dimensional pulsed field gradient NMR measurements of self-diffusion in anisotropic materials for energy storage applications. , 2019, Physical chemistry chemical physics : PCCP.

[2]  C. Grey,et al.  Importance of Incorporating Explicit 3D-Resolved Electrode Mesostructures in Li–O2 Battery Models , 2018, ACS Applied Energy Materials.

[3]  C. Grey,et al.  Stochasticity of Pores Interconnectivity in Li-O2 Batteries and its Impact on the Variations in Electrochemical Performance. , 2018, The journal of physical chemistry letters.

[4]  C. Grey,et al.  The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O2 Batteries. , 2018, Journal of the American Chemical Society.

[5]  Alejandro A. Franco,et al.  Linking the Performances of Li–O2 Batteries to Discharge Rate and Electrode and Electrolyte Properties through the Nucleation Mechanism of Li2O2 , 2017 .

[6]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[7]  Liangbing Hu,et al.  Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. , 2017, Nano letters.

[8]  Alexander C. Forse,et al.  Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy , 2017, Nature Energy.

[9]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[10]  Xiaogang Hao,et al.  The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O 2 batteries , 2016 .

[11]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[12]  Jing Liu,et al.  Capacity-limiting mechanisms in Li/O2 batteries. , 2016, Physical chemistry chemical physics : PCCP.

[13]  Lee Johnson,et al.  Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. , 2016, Nature materials.

[14]  Hee-Dae Lim,et al.  Rational design of redox mediators for advanced Li–O2 batteries , 2016, Nature Energy.

[15]  K. Fezzaa,et al.  Nanoscale 3D imaging at the Advanced Photon Source , 2016 .

[16]  Kees Joost Batenburg,et al.  Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data , 2016, Journal of synchrotron radiation.

[17]  Dong Wook Kim,et al.  Graphene paper with controlled pore structure for high-performance cathodes in Li–O2 batteries , 2016 .

[18]  S. Dong,et al.  Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries , 2016 .

[19]  M. Olivares-Marín,et al.  Mass-transport Control on the Discharge Mechanism in Li-O2 Batteries Using Carbon Cathodes with Varied Porosity. , 2015, ChemSusChem.

[20]  D. Wilkinson,et al.  A review of cathode materials and structures for rechargeable lithium–air batteries , 2015 .

[21]  Donald J. Siegel,et al.  Correlating Li/O2 cell capacity and product morphology with discharge current. , 2015, ACS applied materials & interfaces.

[22]  Colin M. Burke,et al.  Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity , 2015, Proceedings of the National Academy of Sciences.

[23]  M. Bäumer,et al.  In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy , 2015 .

[24]  Amir Faghri,et al.  Modeling study of a Li–O2 battery with an active cathode , 2015 .

[25]  Fang Wang,et al.  A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery , 2014 .

[26]  Francesco De Carlo,et al.  TomoPy: a framework for the analysis of synchrotron tomographic data , 2014, Optics & Photonics - Optical Engineering + Applications.

[27]  Zhaolin Liu,et al.  Influence of carbon pore size on the discharge capacity of Li–O2 batteries , 2014 .

[28]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[29]  Khalil Amine,et al.  Disproportionation in Li-O2 batteries based on a large surface area carbon cathode. , 2013, Journal of the American Chemical Society.

[30]  Venkatasubramanian Viswanathan,et al.  Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries , 2013 .

[31]  Yang Shao-Horn,et al.  Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth. , 2013, The journal of physical chemistry letters.

[32]  Glenn Jones,et al.  "Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System" , 2012 .

[33]  梁宵,et al.  A tubular polypyrrole based air electrode with improved O-2 diffusivity for Li-O-2 batteries , 2012 .

[34]  K. Reuter First‐Principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status, and Frontiers , 2011 .

[35]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[36]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[37]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[38]  T. Bickel A note on confined diffusion , 2006, cond-mat/0604133.

[39]  F. Stallmach,et al.  Evidence of Anisotropic Self-Diffusion of Guest Molecules in Nanoporous Materials of MCM-41 Type , 2000 .

[40]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[41]  S. Barr Advanced Photon Source. , 1991 .

[42]  Jun Yang,et al.  Enhanced Electrochemical Performance of Non-Aqueous Li-O2 Batteries with Triethylene Glycol Dimethyl Ether-Based Electrolyte , 2017 .

[43]  Alejandro A. Franco,et al.  Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach , 2016 .

[44]  K. Abraham Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries , 2015 .

[45]  Lee Johnson,et al.  A Comprehensive Model for Non-Aqueous Lithium Air Batteries Involving Different Reaction Mechanisms , 2015 .

[46]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[47]  Alejandro A. Franco,et al.  Impact of the Cathode Microstructure on the Discharge Performance of Lithium Air Batteries: A Multiscale Model , 2014 .

[48]  J. Owen,et al.  A redox shuttle to facilitate oxygen reduction in the lithium air battery , 2013 .

[49]  Alejandro A. Franco,et al.  Carbon-Based Electrodes for Lithium Air Batteries: Scientific and Technological Challenges from a Modeling Perspective , 2013 .

[50]  V. Viswanathan,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[51]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[52]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .