Roadmap on thermoelectricity

The increasing energy demand and the ever more pressing need for clean technologies of energy conversion pose one of the most urgent and complicated issues of our age. Thermoelectricity, namely the direct conversion of waste heat into electricity, is a promising technique based on a long-standing physical phenomenon, which still has not fully developed its potential, mainly due to the low efficiency of the process. In order to improve the thermoelectric performance, a huge effort is being made by physicists, materials scientists and engineers, with the primary aims of better understanding the fundamental issues ruling the improvement of the thermoelectric figure of merit, and finally building the most efficient thermoelectric devices. In this Roadmap an overview is given about the most recent experimental and computational results obtained within the Italian research community on the optimization of composition and morphology of some thermoelectric materials, as well as on the design of thermoelectric and hybrid thermoelectric/photovoltaic devices.

[1]  Pooi See Lee,et al.  Boosted Output Voltage of BiSbTe‐Based Thermoelectric Generators via Coupled Effect between Thermoelectric Carriers and Triboelectric Charges , 2022, Advanced Energy Materials.

[2]  Terry L. Hendricks,et al.  Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022 , 2022, Energies.

[3]  K. Hamad,et al.  A deep learning perspective into the figure-of-merit of thermoelectric materials , 2022, Materials Letters.

[4]  T. Sakurai,et al.  Miniaturized in-plane π-type thermoelectric device composed of a II–IV semiconductor thin film prepared by microfabrication , 2022, Materials Today Energy.

[5]  P. Scardi,et al.  Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides , 2022, Advanced Functional Materials.

[6]  P. Scardi,et al.  Facile and Low-Cost Fabrication of Cu/Zn/Sn-Based Ternary and Quaternary Chalcogenides Thermoelectric Generators , 2022, ACS Applied Energy Materials.

[7]  D. M. Trucchi,et al.  A Three‐Terminal Hybrid Thermionic‐Photovoltaic Energy Converter , 2022, Advanced Energy Materials.

[8]  Zihang Liu,et al.  Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling , 2022, Nature communications.

[9]  Yongsheng Liu,et al.  Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability , 2022, Advanced materials.

[10]  B. Ryu,et al.  International Round Robin Test of Thermoelectric Generator Modules , 2022, Materials.

[11]  N. Neophytou,et al.  Bipolar conduction asymmetries lead to ultra-high thermoelectric power factor , 2022, Applied Physics Letters.

[12]  G. S. Kumar,et al.  Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab , 2022, ACS Applied Energy Materials.

[13]  Pietro Cataldi,et al.  3D cellulose fiber networks modified by PEDOT:PSS/graphene nanoplatelets for thermoelectric applications , 2022, Applied Physics Letters.

[14]  G. J. Snyder,et al.  Key properties of inorganic thermoelectric materials—tables (version 1) , 2022, Journal of Physics: Energy.

[15]  Qifan Xue,et al.  Recent Progress of Halide Perovskites for Thermoelectric Application , 2022, Nano Energy.

[16]  Jianhua Zhou,et al.  Robust Starch-Polyacrylamide Hydrogel with Scavenging Energy Harvesting Capacity for Efficient Solar Thermoelectricity-Freshwater Cogeneration , 2022, Energy & Environmental Science.

[17]  H. Woo,et al.  Recent Advances in n-Type Organic Thermoelectric Materials, Dopants, and Doping Strategies , 2022, Journal of Materials Chemistry C.

[18]  D. M. Trucchi,et al.  Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode , 2022, Solar Energy Materials and Solar Cells.

[19]  A. Djurišić,et al.  Metal Halide Perovskites as Emerging Thermoelectric Materials , 2021, ACS Energy Letters.

[20]  S. Riva,et al.  Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity , 2021, Frontiers in Electronics.

[21]  C. Artini,et al.  Investigation on the Power Factor of Skutterudite Smy(FexNi1−x)4Sb12 Thin Films: Effects of Deposition and Annealing Temperature , 2021, Materials.

[22]  F. Beltram,et al.  Electrostatic Control of the Thermoelectric Figure of Merit in Ion‐Gated Nanotransistors (Adv. Funct. Mater. 37/2021) , 2021, Advanced Functional Materials.

[23]  G. Pennelli,et al.  Silicon Nanowires: A Breakthrough for Thermoelectric Applications , 2021, Materials.

[24]  Adam D. Printz,et al.  Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives , 2021, Journal of Materials Chemistry A.

[25]  M. Kanatzidis,et al.  Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal , 2021, Nature Materials.

[26]  L. Sorba,et al.  Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays , 2021, Nanomaterials.

[27]  Zhiliang Zhang,et al.  Thermal Transport in Polyethylene: The Effect of Force Fields and Crystallinity , 2021, Macromolecules.

[28]  F. Beltram,et al.  Electrostatic Control of the Thermoelectric Figure of Merit in Ion‐Gated Nanotransistors , 2021, Advanced Functional Materials.

[29]  P. Scardi,et al.  Topological Anderson Insulator in Cation-Disordered Cu2ZnSnS4 , 2021, Nanomaterials.

[30]  V. Demontis,et al.  Semiconductor nanowire arrays for optical sensing: a numerical insight on the impact of array periodicity and density , 2021, Nanotechnology.

[31]  D. M. Trucchi,et al.  Upgrade and present limitations of solar thermionic-thermoelectric technology up to 1000 K , 2021 .

[32]  M. Berggren,et al.  A high-conductivity n-type polymeric ink for printed electronics , 2021, Nature Communications.

[33]  N. Neophytou,et al.  Deformation potential extraction and computationally efficient mobility calculations in silicon from first principles , 2021, Physical Review B.

[34]  K. Tsuchiya,et al.  Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting , 2021 .

[35]  Y. Uraoka,et al.  Carrier and phonon transport control by domain engineering for high-performance transparent thin film thermoelectric generator , 2021 .

[36]  D. Narducci,et al.  Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters , 2021, ACS applied energy materials.

[37]  J. Yi,et al.  Effect of native defects on thermoelectric properties of copper iodide films , 2021, Emergent Materials.

[38]  Z. Ren,et al.  Towards tellurium-free thermoelectric modules for power generation from low-grade heat , 2021, Nature Communications.

[39]  J. Hejtmánek,et al.  Thermoelectric Cu–S-Based Materials Synthesized via a Scalable Mechanochemical Process , 2021 .

[40]  M. Kanatzidis,et al.  The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. , 2021, Chemical reviews.

[41]  A. Carlo,et al.  Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells , 2021, 2101.08504.

[42]  A. Zakhidov,et al.  Enhanced Thermoelectric Properties of Poly(3-hexylthiophene) through the Incorporation of Aligned Carbon Nanotube Forest and Chemical Treatments , 2021, ACS omega.

[43]  Anubhav Jain,et al.  Efficient calculation of carrier scattering rates from first principles , 2020, Nature Communications.

[44]  N. Neophytou,et al.  Correction to “Ultra-High Thermoelectric Power Factors in Narrow Gap Materials with Asymmetric Bands” , 2020, The Journal of Physical Chemistry C.

[45]  Jinsoo Park,et al.  Perturbo: A software package for ab initio electron-phonon interactions, charge transport and ultrafast dynamics , 2020, Comput. Phys. Commun..

[46]  Seung-Cheol Lee,et al.  AMMCR: Ab initio model for mobility and conductivity calculation by using Rode Algorithm , 2019, Comput. Phys. Commun..

[47]  David J. Singh,et al.  TransOpt. A code to solve electrical transport properties of semiconductors in constant electron–phonon coupling approximation , 2021 .

[48]  P. Scardi,et al.  Experimental and Ab Initio Study of Cu2SnS3 (CTS) Polymorphs for Thermoelectric Applications , 2020, The Journal of Physical Chemistry C.

[49]  N. Pugno,et al.  Origin of a Simultaneous Suppression of Thermal Conductivity and Increase of Electrical Conductivity and Seebeck Coefficient in Disordered Cubic Cu 2 ZnSnS 4 , 2020, Physical Review Applied.

[50]  F. Beltram,et al.  Impact of electrostatic doping on carrier concentration and mobility in InAs nanowires , 2020, Nanotechnology.

[51]  C. Fanciulli,et al.  Role of secondary phases and thermal cycling on thermoelectric properties of TiNiSn half-Heusler alloy prepared by different processing routes , 2020 .

[52]  Chia‐Jyi Liu,et al.  Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics , 2020 .

[53]  G. Pennelli,et al.  Seebeck coefficient of silicon nanowire forests doped by thermal diffusion , 2020, Beilstein journal of nanotechnology.

[54]  H. Kosina,et al.  Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors , 2020, The European Physical Journal B.

[55]  A. R.,et al.  Realization of high thermoelectric power factor in Ta-doped ZnO by grain boundary engineering , 2020 .

[56]  H. Akinaga Recent advances and future prospects in energy harvesting technologies , 2020, Japanese Journal of Applied Physics.

[57]  Y. Uraoka,et al.  Optimizing the thermoelectric performance of InGaZnO thin films depending on crystallinity via hydrogen incorporation , 2020 .

[58]  Jun Liu,et al.  Recent development of n-type thermoelectric materials based on conjugated polymers , 2020 .

[59]  D. M. Trucchi,et al.  Novel concepts and nanostructured materials for thermionic-based solar and thermal energy converters , 2020, Nanotechnology.

[60]  Liu Xin,et al.  Wearable multi-sensing double-chain thermoelectric generator , 2020, Microsystems & Nanoengineering.

[61]  O. Paul,et al.  Nanostructured planar-type uni-leg Si thermoelectric generators , 2020, Applied Physics Express.

[62]  A. Reale,et al.  Developing printable thermoelectric materials based on graphene nanoplatelet/ethyl cellulose nanocomposites , 2020, Materials Research Express.

[63]  C. Leighton,et al.  Violation of the Wiedemann-Franz law through reduction of thermal conductivity in gold thin films , 2020 .

[64]  S. Casassa,et al.  Key Role of Defects in Thermoelectric Performance of TiMSn (M = Ni, Pd, and Pt) Half-Heusler Alloys , 2020, The Journal of Physical Chemistry C.

[65]  M. Nomura,et al.  Design of a planar-type uni-leg SiGe thermoelectric generator , 2020, Japanese Journal of Applied Physics.

[66]  G. Pennelli,et al.  High Power Thermoelectric Generator Based on Vertical Silicon Nanowires , 2020, Nano letters.

[67]  C. Artini,et al.  Compositional Optimization and Structural Properties of the Filled Skutterudite Smy(FexNi1−x)4Sb11.5Sn0.5 , 2020 .

[68]  Neophytos Neophytou,et al.  Material Descriptors for the Discovery of Efficient Thermoelectrics , 2020, 2006.02789.

[69]  C. Artini,et al.  Low-temperature thermoelectric properties of p-type and n-type filled skutterudite compounds Smy(Fe1−xNix)4Sb12 prepared under high pressure , 2020, Japanese Journal of Applied Physics.

[70]  B. Dunn,et al.  A general method to synthesize and sinter bulk ceramics in seconds , 2020, Science.

[71]  D. Baran,et al.  Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity , 2020, Advanced science.

[72]  D. M. Trucchi,et al.  Performance evaluation and optimization of the cooling system of a hybrid thermionic-photovoltaic converter , 2020 .

[73]  D. M. Trucchi,et al.  Photovoltaic Anodes for Enhanced Thermionic Energy Conversion , 2020, ACS Energy Letters.

[74]  N. Pugno,et al.  Order–Disorder Transition in Kesterite Cu2ZnSnS4: Thermopower Enhancement via Electronic Band Structure Modification , 2020 .

[75]  A. Carlo,et al.  The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene) , 2020, Materials.

[76]  Q. Akkerman,et al.  What Defines a Halide Perovskite? , 2020, ACS energy letters.

[77]  F. Rossi,et al.  Orbital Tuning of Tunnel Coupling in InAs/InP Nanowire Quantum Dots , 2019, Nano letters.

[78]  J. Maassen,et al.  Analysis of simple scattering models on the thermoelectric performance of analytical electron dispersions , 2019, Journal of Applied Physics.

[79]  L. Sorba,et al.  Strategy for accurate thermal biasing at the nanoscale , 2018, Nanotechnology.

[80]  C. Artini,et al.  Compositional Optimization and Structural Properties of the Filled Skutterudite Sm y (Fe x Ni 1− x ) 4 Sb 11.5 Sn 0.5 , 2020 .

[81]  N. Neophytou,et al.  Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors , 2019, Materials Today Physics.

[82]  S. Ullah,et al.  Thermoelectric performance of a metastable thin-film Heusler alloy , 2019, Nature.

[83]  N. Neophytou,et al.  Impact of the scattering physics on the power factor of complex thermoelectric materials , 2019, Journal of Applied Physics.

[84]  Davide Beretta,et al.  Thermoelectrics: From history, a window to the future , 2019, Materials Science and Engineering: R: Reports.

[85]  P. Rogl,et al.  The Effect of Severe Plastic Deformation on Thermoelectric Performance of Skutterudites, Half-Heuslers and Bi-Tellurides , 2019, MATERIALS TRANSACTIONS.

[86]  Jia Xu,et al.  Fabrication of Sulfur‐Incorporated Bismuth‐Based Perovskite Solar Cells via a Vapor‐Assisted Solution Process , 2019, Solar RRL.

[87]  D. Vashaee,et al.  Strategies for engineering phonon transport in Heusler thermoelectric compounds , 2019, Renewable and Sustainable Energy Reviews.

[88]  C. Fanciulli,et al.  Effect of rapid solidification on the synthesis and thermoelectric properties of Yb-filled Co4Sb12 skutterudite , 2019, Journal of Alloys and Compounds.

[89]  F. Beltram,et al.  Microwave-Assisted Tunneling in Hard-Wall InAs/InP Nanowire Quantum Dots , 2019, Scientific Reports.

[90]  Albert Tarancón,et al.  Powering the IoT revolution with heat , 2019, Nature Electronics.

[91]  Rishi Maiti,et al.  Conductometric Sensing with Individual InAs Nanowires , 2019, Sensors.

[92]  S. Nie,et al.  Temperature Sensitivity of Multicrystalline Silicon Solar Cells , 2019, IEEE Journal of Photovoltaics.

[93]  Deyu Li,et al.  Thermoelectrics of Nanowires. , 2019, Chemical reviews.

[94]  F. Beltram,et al.  Thermoelectric Conversion at 30 K in InAs/InP Nanowire Quantum Dots. , 2019, Nano letters.

[95]  D. Hewak,et al.  High-throughput physical vapour deposition flexible thermoelectric generators , 2019, Scientific Reports.

[96]  D. Hewak,et al.  High-throughput physical vapour deposition flexible thermoelectric generators , 2019, Scientific Reports.

[97]  B. Cho,et al.  High-Performance Monolithic Photovoltaic–Thermoelectric Hybrid Power Generator Using an Exothermic Reactive Interlayer , 2019, ACS Applied Energy Materials.

[98]  A. Ferrario,et al.  Temperature dependent iterative model of thermoelectric generator including thermal losses in passive elements , 2019, Applied Thermal Engineering.

[99]  K. Yubuta,et al.  High-ZT half-Heusler thermoelectrics, Ti0.5Zr0.5NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02: Physical properties at low temperatures , 2019, Acta Materialia.

[100]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[101]  Ning Wang,et al.  Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23% , 2019, Materials Today Energy.

[102]  N. Marzari,et al.  Unified theory of thermal transport in crystals and glasses , 2019, Nature Physics.

[103]  Hong Wang,et al.  Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration , 2019, Joule.

[104]  E. Pop,et al.  Thermal transport in MoS2 from molecular dynamics using different empirical potentials , 2018, Physical Review B.

[105]  Takao Mori,et al.  Thermoelectric materials and applications for energy harvesting power generation , 2018, Science and technology of advanced materials.

[106]  C. Fanciulli,et al.  Thermoelectric Properties of TiNiSn Half Heusler Alloy Obtained by Rapid Solidification and Sintering , 2018, Journal of Materials Engineering and Performance.

[107]  F. Beltram,et al.  Suspended InAs Nanowire-Based Devices for Thermal Conductivity Measurement Using the 3ω Method , 2018, Journal of Materials Engineering and Performance.

[108]  F. Beltram,et al.  Ionic‐Liquid Gating of InAs Nanowire‐Based Field‐Effect Transistors , 2018, Advanced Functional Materials.

[109]  D. M. Trucchi,et al.  Solar Thermionic‐Thermoelectric Generator (ST2G): Concept, Materials Engineering, and Prototype Demonstration , 2018, Advanced Energy Materials.

[110]  G. Pennelli,et al.  Thermal conductivity of silicon nanowire forests , 2018, Nanotechnology.

[111]  G. Pennelli,et al.  Fabrication of Silicon Nanowire Forests for Thermoelectric Applications by Metal-Assisted Chemical Etching , 2018, Journal of Materials Engineering and Performance.

[112]  M. Kirichenko,et al.  Semitransparent p-CuI and n-ZnO thin films prepared by low temperature solution growth for thermoelectric conversion of near-infrared solar light , 2018, Solar Energy.

[113]  J. Ouyang,et al.  Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface , 2018, Nano Energy.

[114]  Philippe Ghosez,et al.  Thermoelectric properties of chemically substituted full-HeuslerFe2TiSn1−xSbx(x=0,0.1,and0.2)compounds , 2018, Physical Review Materials.

[115]  C. Bernini,et al.  Synthesis and Structural Characterization of Sb-Doped TiFe2Sn Heusler Compounds , 2018, Journal of materials engineering and performance (Print).

[116]  M. Chabinyc,et al.  Tailoring the Seebeck Coefficient of PEDOT:PSS by Controlling Ion Stoichiometry in Ionic Liquid Additives , 2018, Chemistry of Materials.

[117]  B. Lorenzi,et al.  Theoretical efficiency of hybrid solar thermoelectric-photovoltaic generators , 2018, Journal of Applied Physics.

[118]  P. Jund,et al.  Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects , 2018, Materials.

[119]  I. Tittonen,et al.  CuI p-type thin films for highly transparent thermoelectric p-n modules , 2018, Scientific Reports.

[120]  F. E. Karasz,et al.  Solution-fabrication dependent thermoelectric behavior of iodine-doped regioregular and regiorandom P3HT/carbon nanotube composites , 2018 .

[121]  C. Artini,et al.  Structure, microstructure and microhardness of rapidly solidified Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) thermoelectric compounds , 2018 .

[122]  G. Pennelli,et al.  Potentialities of silicon nanowire forests for thermoelectric generation , 2018, Nanotechnology.

[123]  E. R. Margine,et al.  Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors , 2018, 1803.05462.

[124]  Ho Won Jang,et al.  Low-dimensional halide perovskites: review and issues , 2018 .

[125]  L. Colombo,et al.  Calculating lattice thermal conductivity: a synopsis , 2018 .

[126]  Toan Nguyen Van,et al.  Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process , 2018 .

[127]  D. Narducci,et al.  Experimental Determination of Power Losses and Heat Generation in Solar Cells for Photovoltaic-Thermal Applications , 2018, Journal of Materials Engineering and Performance.

[128]  Massimo Macucci,et al.  Thermal Conductivity Reduction in Rough Silicon Nanomembranes , 2017, IEEE Transactions on Nanotechnology.

[129]  Natalio Mingo,et al.  Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods. , 2017, The journal of physical chemistry. B.

[130]  Sivaprasad Ghanta,et al.  Thermoelectric properties of Se and Zn/Cd/Sn double substituted Co4Sb12 skutterudite compounds. , 2017, Physical chemistry chemical physics : PCCP.

[131]  D. M. Trucchi,et al.  ZnSb-based thin films prepared by ns-PLD for thermoelectric applications , 2017 .

[132]  D. R. Strachan,et al.  Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering , 2017 .

[133]  D. Narducci,et al.  Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies , 2017 .

[134]  Y. Fu,et al.  Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film , 2017, Nature Communications.

[135]  Hanfu Wang,et al.  A thin film thermoelectric device fabricated by a self-aligned shadow mask method , 2017 .

[136]  H. Yao,et al.  Higher PEDOT Molecular Weight Giving Rise to Higher Thermoelectric Property of PEDOT:PSS: A Comparative Study of Clevios P and Clevios PH1000. , 2017, ACS applied materials & interfaces.

[137]  F. Passaretti,et al.  Structural Texture Induced in SnSe Thermoelectric Compound via Open Die Pressing. , 2017, Journal of Nanoscience and Nanotechnology.

[138]  N. Toshima Recent progress of organic and hybrid thermoelectric materials , 2017 .

[139]  M. Macucci,et al.  Fabrication Techniques for Thermoelectric Devices Based on Nanostructured Silicon. , 2017, Journal of Nanoscience and Nanotechnology.

[140]  Eun Seon Cho,et al.  Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing , 2017 .

[141]  Martin A. Green,et al.  A full thermal model for photovoltaic devices , 2016 .

[142]  Philippe M. Bardet,et al.  Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices , 2016 .

[143]  Yimin Xuan,et al.  Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system , 2016 .

[144]  A. Pham,et al.  Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films. , 2016, ACS applied materials & interfaces.

[145]  X. Crispin,et al.  Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers. , 2017, Advanced materials.

[146]  Jing Guo,et al.  Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics , 2016 .

[147]  J. Behler Perspective: Machine learning potentials for atomistic simulations. , 2016, The Journal of chemical physics.

[148]  T. Ma,et al.  Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route , 2016 .

[149]  T. Iida,et al.  Structural, compositional and functional properties of Sb-doped Mg2Si synthesized in Al2O3-crucibles , 2016 .

[150]  Yimin Xuan,et al.  A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell , 2016 .

[151]  G. Pennelli,et al.  Reliable Fabrication of Metal Contacts on Silicon Nanowire Forests. , 2016, Nano letters.

[152]  Jooheon Kim,et al.  Chemically Exfoliated SnSe Nanosheets and Their SnSe/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films for Polymer Based Thermoelectric Applications. , 2016, ACS nano.

[153]  Anubhav Jain,et al.  Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment , 2016 .

[154]  Stefano Boldrini,et al.  IR thermography for the assessment of the thermal conductivity of thermoelectric modules at intermediate temperature , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[155]  L. Sorba,et al.  Local noise in a diffusive conductor , 2016, Scientific Reports.

[156]  S. Mahanti,et al.  Electronic structure and thermoelectric properties of half-Heusler compounds with eight electron valence count—KScX (X = C and Ge) , 2016 .

[157]  Massimo Macucci,et al.  High-power thermoelectric generators based on nanostructured silicon , 2016 .

[158]  Choongho Yu,et al.  Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials , 2016 .

[159]  L. Sorba,et al.  Noise thermometry applied to thermoelectric measurements in InAs nanowires , 2016, 1602.08851.

[160]  C. Artini,et al.  Correlations between Structural and Electronic Properties in the Filled Skutterudite Smy(FexNi1-x)4Sb12. , 2016, Inorganic chemistry.

[161]  Dario Narducci,et al.  Challenges and Perspectives in Tandem Thermoelectric–Photovoltaic Solar Energy Conversion , 2016, IEEE Transactions on Nanotechnology.

[162]  M. Martín‐González,et al.  Thermoelectric nanowires: A brief prospective , 2016 .

[163]  P. Kim,et al.  Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene , 2015, Science.

[164]  U. Waghmare,et al.  Thermoelectric properties of materials with nontrivial electronic topology , 2015 .

[165]  S. Cho,et al.  Spray-printed CNT/P3HT organic thermoelectric films and power generators , 2015 .

[166]  Eugene A. Katz,et al.  Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling , 2015 .

[167]  A. Kribus,et al.  Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion , 2015 .

[168]  K. K. Nielsen,et al.  The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system , 2015, 1508.01344.

[169]  J. Sakamoto,et al.  Thermoelectric properties of Sn substituted p-type Nd filled skutterudites , 2015 .

[170]  J. Pérez‐Prieto,et al.  Organometal Halide Perovskites: Bulk Low‐Dimension Materials and Nanoparticles , 2015 .

[171]  Peter Rogl,et al.  Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design , 2015 .

[172]  Giovanni Pennelli,et al.  Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives , 2015 .

[173]  A. Bellucci,et al.  Nano-crystalline Ag–PbTe thermoelectric thin films by a multi-target PLD system , 2015 .

[174]  L. Paulatto,et al.  Phonon hydrodynamics in two-dimensional materials , 2015, Nature Communications.

[175]  G. J. Snyder,et al.  Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics , 2015 .

[176]  X. Crispin,et al.  Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene) , 2015, Advanced materials.

[177]  Nicola Marzari,et al.  Thermal conductivity of graphene and graphite: collective excitations and mean free paths. , 2014, Nano letters.

[178]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[179]  Jan Sendler,et al.  The band gap of Cu2ZnSnSe4: Effect of order-disorder , 2014 .

[180]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[181]  R. Martins,et al.  Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties , 2014 .

[182]  L. Colombo,et al.  Calculating thermal conductivity in a transient conduction regime: theory and implementation , 2014, European Physical Journal B : Condensed Matter Physics.

[183]  Charlotte Platzer-Björkman,et al.  A low-temperature order-disorder transition in Cu2ZnSnS4 thin films , 2014 .

[184]  F. Smole,et al.  Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells , 2014 .

[185]  K. Bartholomé,et al.  Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities , 2014, Journal of Electronic Materials.

[186]  E. Bakkers,et al.  Quantum computing based on semiconductor nanowires , 2013 .

[187]  Gang Xu,et al.  Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules , 2013 .

[188]  Yang Yang,et al.  High-temperature solar cell for concentrated solar-power hybrid systems , 2013 .

[189]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[190]  Choongho Yu,et al.  Lossless hybridization between photovoltaic and thermoelectric devices , 2013, Scientific Reports.

[191]  G. Pennelli,et al.  Seebeck coefficient of nanowires interconnected into large area networks. , 2013, Nano letters.

[192]  M. Martín-González,et al.  Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor , 2013 .

[193]  S. Boldrini,et al.  Test Rig for High-Temperature Thermopower and Electrical Conductivity Measurements , 2013, Journal of Electronic Materials.

[194]  H. Radousky,et al.  Energy harvesting: an integrated view of materials, devices and applications , 2012, Nanotechnology.

[195]  Luis Fonseca,et al.  Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices , 2012 .

[196]  W. Schranz,et al.  Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12 , 2012 .

[197]  Lauryn L. Baranowski,et al.  Concentrated solar thermoelectric generators , 2012 .

[198]  H. Katz,et al.  Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis , 2012 .

[199]  Zhiqun Lin,et al.  Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface , 2012 .

[200]  Jianyong Ouyang,et al.  Significant different conductivities of the two grades of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), Clevios P and Clevios PH1000, arising from different molecular weights. , 2012, ACS applied materials & interfaces.

[201]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[202]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[203]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[204]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[205]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[206]  David J. Singh,et al.  High-temperature thermoelectric performance of heavily doped PbSe , 2010 .

[207]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[208]  Piero Pianetta,et al.  Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.

[209]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[210]  D. Passeri,et al.  Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium , 2009 .

[211]  H. Geng,et al.  Solidification contraction-free synthesis for the Yb0.15Co4Sb12 bulk material , 2007 .

[212]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[213]  José L. Pérez-Aparicio,et al.  Finite Element Analysis of Nonlinear Fully Coupled Thermoelectric Materials , 2007 .

[214]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[215]  G. J. Snyder,et al.  Thermoelectric Power Generation: Efficiency and Compatibility , 2005 .

[216]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[217]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[218]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[219]  G. A. Slack,et al.  The effect of rare‐earth filling on the lattice thermal conductivity of skutterudites , 1996 .

[220]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[221]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[222]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[223]  T. Harman,et al.  Multiple Stage Thermoelectric Generation of Power , 1958 .

[224]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .