Analysis of artificial dissipation of explicit and implicit time-integration methods

Jan Glaubitz was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/15-1. Philipp Offner was supported by SNF project\Solving advection dominated problems with high order schemes with polygonal meshes: Application to compressible and incompressible flow problems" and the UZH Postdoc Grant. Hendrik Ranocha was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/14-1.

[1]  R. Abgrall,et al.  High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Jan Nordström,et al.  Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains , 2015, J. Comput. Phys..

[4]  W. Marsden I and J , 2012 .

[5]  Hendrik Ranocha,et al.  Enhancing stability of correction procedure via reconstruction using summation-by-parts operators I: Artificial dissipation , 2016 .

[6]  Lisandro Dalcin,et al.  Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..

[7]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[8]  Gregor Gassner,et al.  An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry , 2015, J. Comput. Phys..

[9]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[10]  Carlos Lozano,et al.  Entropy Production by Explicit Runge–Kutta Schemes , 2018, J. Sci. Comput..

[11]  Heping Ma,et al.  Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws , 1998 .

[12]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[13]  Rémi Abgrall,et al.  Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes , 2019, J. Comput. Phys..

[14]  Andrew J. Majda,et al.  The Fourier method for nonsmooth initial data , 1978 .

[15]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[16]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[17]  Mengping Zhang,et al.  STRONG STABILITY PRESERVING PROPERTY OF THE DEFERRED CORRECTION TIME DISCRETIZATION , 2008 .

[18]  Philipp Öffner,et al.  Extended skew-symmetric form for summation-by-parts operators and varying Jacobians , 2017, J. Comput. Phys..

[19]  Philipp Öffner,et al.  L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.

[20]  N. SIAMJ.,et al.  CHEBYSHEV – LEGENDRE SUPER SPECTRAL VISCOSITY METHOD FOR NONLINEAR CONSERVATION LAWS , 1998 .

[21]  David I. Ketcheson,et al.  Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms , 2019, SIAM J. Numer. Anal..

[22]  Philipp Öffner,et al.  Spectral convergence for orthogonal polynomials on triangles , 2013, Numerische Mathematik.

[23]  Hendrik Ranocha,et al.  Generalised summation-by-parts operators and variable coefficients , 2017, J. Comput. Phys..

[24]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[25]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[26]  T. Sonar,et al.  Enhancing stability of correction procedure via reconstruction using summation-by-parts operators II: Modal filtering , 2016, 1606.01056.

[27]  Élise Le Mélédo,et al.  On the Connection between Residual Distribution Schemes and Flux Reconstruction , 2018, 1807.01261.

[28]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[29]  Philipp Öffner,et al.  Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators , 2018, Applied Numerical Mathematics.

[30]  Alberto Costa Nogueira,et al.  Smooth and Compactly Supported Viscous Sub-cell Shock Capturing for Discontinuous Galerkin Methods , 2018, J. Sci. Comput..

[31]  Jan Nordström,et al.  A Roadmap to Well Posed and Stable Problems in Computational Physics , 2016, Journal of Scientific Computing.

[32]  Jan Glaubitz,et al.  Shock Capturing by Bernstein Polynomials for Scalar Conservation Laws , 2019, Appl. Math. Comput..

[33]  J. S. Hesthaven,et al.  Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method , 2011, 1102.3190.

[34]  Hendrik Ranocha,et al.  On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators , 2018, IMA Journal of Numerical Analysis.

[35]  Chi-Wang Shu,et al.  Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations , 2017 .

[36]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[37]  Jan Nordström,et al.  Summation-by-parts in time , 2013, J. Comput. Phys..

[38]  Philipp Öffner,et al.  Application of modal filtering to a spectral difference method , 2016, Math. Comput..

[39]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[40]  Hendrik Ranocha,et al.  Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods , 2016, GEM - International Journal on Geomathematics.

[41]  Gregor Gassner,et al.  A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations , 2016, Appl. Math. Comput..

[42]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[43]  T. Sonar,et al.  Detecting Strength and Location of Jump Discontinuities in Numerical Data , 2013 .

[44]  Eitan Tadmor,et al.  From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..

[45]  Gregor Gassner,et al.  Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws , 2018, J. Sci. Comput..

[46]  Chi-Wang Shu,et al.  Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws , 2017, J. Comput. Phys..

[47]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[48]  Hendrik Ranocha,et al.  Some notes on summation by parts time integration methods , 2019, Results in Applied Mathematics.

[49]  Philipp Öffner,et al.  Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients , 2018, J. Sci. Comput..

[50]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[51]  Rémi Abgrall,et al.  A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes , 2017, J. Comput. Phys..

[52]  Rémi Abgrall,et al.  Some Remarks About Conservation for Residual Distribution Schemes , 2017, Comput. Methods Appl. Math..

[53]  David W. Zingg,et al.  High-Order Implicit Time-Marching Methods Based on Generalized Summation-By-Parts Operators , 2014, SIAM J. Sci. Comput..

[54]  Anne Gelb,et al.  Using $$\ell _1$$ℓ1 Regularization to Improve Numerical Partial Differential Equation Solvers , 2018, J. Sci. Comput..

[55]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[56]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[57]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[58]  Hendrik Ranocha,et al.  Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[59]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[60]  Philipp Offner,et al.  Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction , 2018, 1806.01575.

[61]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[62]  Zheng Sun,et al.  Strong Stability of Explicit Runge-Kutta Time Discretizations , 2018, SIAM J. Numer. Anal..

[63]  Carlos Lozano,et al.  Entropy Production by Implicit Runge–Kutta Schemes , 2019, J. Sci. Comput..

[64]  Anne Gelb,et al.  High Order Edge Sensors with ℓ1 Regularization for Enhanced Discontinuous Galerkin Methods , 2019, SIAM J. Sci. Comput..

[65]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .