Environmental impacts of technology learning curve for cellulosic ethanol in Brazil

[1]  Bo Pedersen Weidema,et al.  Avoiding Co‐Product Allocation in Life‐Cycle Assessment , 2000 .

[2]  O. Lucon,et al.  Ethanol learning curve—the Brazilian experience , 2004 .

[3]  A. Faaij,et al.  Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term , 2005 .

[4]  Hans-Jürgen Dr. Klüppel,et al.  The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management – Life cycle assessment – Principles and framework - ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines , 2005 .

[5]  J. Seabra,et al.  Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. , 2008 .

[6]  Martin Junginger,et al.  Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane , 2009 .

[7]  Gjalt Huppes,et al.  Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol , 2009 .

[8]  Douglas J. Reinemann,et al.  Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels , 2010 .

[9]  Ken E. Giller,et al.  Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques , 2010 .

[10]  Rubens Maciel Filho,et al.  Environmental and economic assessment of sugarcane first generation biorefineries in Brazil , 2012, Clean Technologies and Environmental Policy.

[11]  J. R. Hess,et al.  Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol , 2011 .

[12]  Joaquim E. A. Seabra,et al.  Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods , 2013, The International Journal of Life Cycle Assessment.

[13]  G. Zacchi,et al.  Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process , 2012, Biotechnology for Biofuels.

[14]  R. Heijungs,et al.  Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies , 2012, The International Journal of Life Cycle Assessment.

[15]  H. Cai,et al.  Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use , 2012 .

[16]  P. Blanken,et al.  An underestimated role of precipitation frequency in regulating summer soil moisture , 2012 .

[17]  Rubens Maciel Filho,et al.  Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. , 2012, Bioresource technology.

[18]  Marcelo Pereira da Cunha,et al.  Biorefineries for the production of first and second generation ethanol and electricity from sugarcane , 2013 .

[19]  Ester van der Voet,et al.  Long-term prospects for the environmental profile of advanced sugar cane ethanol. , 2014, Environmental science & technology.

[20]  Daniel Klein-Marcuschamer,et al.  Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses , 2014 .

[21]  Lei Wang,et al.  Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward , 2014 .

[22]  M. Orejas,et al.  Enhanced glycosyl hydrolase production in Aspergillus nidulans using transcription factor engineering approaches , 2014, Biotechnology for Biofuels.

[23]  M. Galbe,et al.  Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock , 2014, Biotechnology for Biofuels.

[24]  André Faaij,et al.  Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies , 2015 .

[25]  Luciano Cunha de Sousa,et al.  De promessa a realidade: como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar: uma avaliação do potencial competitivo e sugestões de política pública , 2015 .

[26]  Biorefinery Products Logistics, Commercialization, and Use , 2016 .

[27]  L. JunqueiraTassia,et al.  The Virtual Sugarcane Biorefinery—A Simulation Tool to Support Public Policies Formulation in Bioenergy , 2016 .