Measurement of Schumann Resonance at Kamioka

On the stochastic gravitational-wave search, correlated noise in two or more gravitational-wave detectors can be a serious problem. Schumann resonance is the name of a standing wave of electromagnetic fields, which is one of the correlated noise sources for the second-generation gravitational-wave detectors. We measured the noise levels of the environmental magnetic field both inside and outside the mine of KAGRA site at Kamioka. In this letter, we report the result of the measurement and compare the amplitude of magnetic fields inside and outside the mine to find possible issues or gain of constructing a detector underground.

[1]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[2]  Nelson Christensen,et al.  Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.

[3]  B. Allen Double Neutron Star Binaries : A "Foreground" Source for the Gravitational-Wave Stochastic Background(Chapter VI: Gravitational waves,Cosmology-The Next Generation-) , 2011 .

[4]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[5]  R. Ciolfi,et al.  Stochastic background of gravitational waves emitted by magnetars , 2010, 1009.1240.

[6]  P. Avelino,et al.  Stochastic gravitational wave background generated by cosmic string networks: Velocity-dependent one-scale model versus scale-invariant evolution , 2013, 1304.2445.

[7]  W. O. Schumann Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde — Luft — Ionosphäre , 1952 .

[8]  Allen,et al.  Stochastic gravity-wave background in inflationary-universe models. , 1988, Physical review. D, Particles and fields.

[9]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[10]  W. O. Schumann Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist , 1952 .

[11]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[12]  David Blair,et al.  STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES , 2011, 1104.3565.

[13]  W. Anderson,et al.  Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis , 2011 .