Reconfigurable enhancement of actuation forces by engineered losses in non-Hermitian metamaterials

[1]  T. Kottos,et al.  Emergence of Exceptional Points in Periodic Metastructures with Hidden PT-symmetric Defects , 2022, Journal of Applied Mechanics.

[2]  R. El-Ganainy,et al.  Linear response theory of open systems with exceptional points , 2022, Nature Communications.

[3]  H. Iizuka,et al.  Experimental demonstration of extremely asymmetric flexural wave absorption at the exceptional point , 2022, Extreme Mechanics Letters.

[4]  T. Kottos,et al.  Enhanced Signal-to-Noise Performance of EP-based Electromechanical Accelerometers , 2022, 2201.13328.

[5]  S. Hughes,et al.  Quasinormal Modes, Local Density of States, and Classical Purcell Factors for Coupled Loss-Gain Resonators , 2021, Physical Review X.

[6]  A. Knorr,et al.  Fermi's Golden Rule for Spontaneous Emission in Absorptive and Amplifying Media. , 2021, Physical review letters.

[7]  T. Kottos,et al.  Universal route for the emergence of exceptional points in PT-symmetric metamaterials with unfolding spectral symmetries , 2020, 2008.13371.

[8]  M. Ruzzene,et al.  Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media , 2020, 2007.15146.

[9]  R. El-Ganainy,et al.  Control of spontaneous emission dynamics in microcavities with chiral exceptional surfaces , 2020, Physical Review Research.

[10]  J. Wiersig,et al.  Decay suppression of spontaneous emission of a single emitter in a high- Q cavity at exceptional points , 2020 .

[11]  T. Kottos,et al.  Environmentally Induced Exceptional Points in Elastodynamics , 2019, Physical Review Applied.

[12]  Mohammad P. Hokmabadi,et al.  Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity , 2019, Nature.

[13]  A. Wineman Viscoelastic Solids , 2019, Constitutive Modelling of Solid Continua.

[14]  G. Shmuel,et al.  Anomalous energy transport in laminates with exceptional points , 2019, Journal of the Mechanics and Physics of Solids.

[15]  Kerry Vahala,et al.  Enhanced sensitivity operation of an optical gyroscope near an exceptional point , 2019, 1901.08217.

[16]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[17]  D. Christodoulides,et al.  Asymmetric acoustic energy transport in non-Hermitian metamaterials. , 2018, The Journal of the Acoustical Society of America.

[18]  V. Popov,et al.  Viscoelastic Materials , 2018, Active and Passive Vibration Damping.

[19]  Chiara Daraio,et al.  Experimental realization of on-chip topological nanoelectromechanical metamaterials , 2018, Nature.

[20]  Ying Wu,et al.  Acoustic Purcell Effect for Enhanced Emission. , 2018, Physical review letters.

[21]  C. Poulton,et al.  Elastic Purcell Effect. , 2018, Physical review letters.

[22]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[23]  Mehrdad Mirbabayi Quasinormal Modes , 2018 .

[24]  J. You,et al.  Observation of the exceptional point in cavity magnon-polaritons , 2017, Nature Communications.

[25]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[26]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[27]  M. Haberman,et al.  Non-reciprocal wave propagation in modulated elastic metamaterials , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Shanhui Fan,et al.  Robust wireless power transfer using a nonlinear parity–time-symmetric circuit , 2017, Nature.

[29]  Zin Lin,et al.  Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points , 2017, 1705.07390.

[30]  Steven G. Johnson,et al.  General theory of spontaneous emission near exceptional points. , 2016, Optics express.

[31]  E. Broitman Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview , 2017, Tribology Letters.

[32]  T. Kottos,et al.  Giant Nonreciprocity Near Exceptional-Point Degeneracies , 2016, 1701.04320.

[33]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[34]  Zin Lin,et al.  1 9 M ay 2 01 6 Inverse design of third-order Dirac exceptional points in photonic crystals , 2016 .

[35]  Y. Wang,et al.  Accessing the exceptional points of parity-time symmetric acoustics , 2016, Nature Communications.

[36]  H. Xu,et al.  Topological energy transfer in an optomechanical system with exceptional points , 2016, Nature.

[37]  Liang Jiang,et al.  Anti-parity–time symmetry with flying atoms , 2015, Nature Physics.

[38]  T. Kottos,et al.  Macroscopic magnetic structures with balanced gain and loss , 2015 .

[39]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[40]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[41]  M. Ruzzene,et al.  Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook , 2014 .

[42]  G. Lerosey,et al.  Subwavelength Focussing in Metamaterials Using Far Field Time Reversal , 2013 .

[43]  M. Khajavikhan,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[44]  G. Theocharis,et al.  Bifurcation-based acoustic switching and rectification. , 2011, Nature materials.

[45]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[46]  Marko Lonvcar,et al.  Enhanced single-photon emission from a diamond–silver aperture , 2011, 1105.4096.

[47]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[48]  J. Joseph,et al.  Genetic Research in Psychiatry and Psychology , 2010 .

[49]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[50]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[51]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[52]  A. Srikantha Phani,et al.  On the necessary and sufficient conditions for the existence of classical normal modes in damped linear dynamic systems , 2003 .

[53]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[54]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[55]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[56]  Tosio Kato Perturbation theory for linear operators , 1966 .

[57]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[58]  P. Dirac The Quantum Theory of the Emission and Absorption of Radiation , 1927 .