Global dynamics of a predator–prey model

Abstract This paper deals with the dynamics of a predator–prey model with Hassell–Varley–Holling functional response. First, we show that the predator coexists with prey if and only if predator's growth ability is greater than its death rate. Second, using a blow-up technique, we prove that the origin equilibrium point is repelling and extinction of both predator and prey populations is impossible. Third, the local and global stability of the positive steady state coincide when the predator interference is large. Finally, for a typical biological case, we show instability of the positive equilibrium implies global stability of the limit cycle. Numerical simulations are carried out for a hypothetical set of parameter values to substantiate our analytical findings.

[1]  R. Arditi,et al.  Underestimation of mutual interference of predators , 1990, Oecologia.

[2]  William J. Sutherland,et al.  Aggregation and the `ideal free ` distribution , 1983 .

[3]  Sze-Bi Hsu,et al.  Relaxation oscillation profile of limit cycle in predator-prey system , 2009 .

[4]  Sze-Bi Hsu,et al.  Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response , 2008 .

[5]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[6]  Louis-Félix Bersier,et al.  An experimental test of the nature of predation: neither prey‐ nor ratio‐dependent , 2005 .

[7]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[8]  M. Hassell,et al.  New Inductive Population Model for Insect Parasites and its Bearing on Biological Control , 1969, Nature.

[9]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[10]  Junjie Wei,et al.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey , 2011 .

[11]  S. Ellner,et al.  Testing for predator dependence in predator-prey dynamics: a non-parametric approach , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Tzy-Wei Hwang,et al.  Uniqueness of the Limit Cycle for Gause-Type Predator–Prey Systems , 1999 .

[13]  Sze-Bi Hsu,et al.  Rich dynamics of a ratio-dependent one-prey two-predators model , 2001, Journal of mathematical biology.

[14]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926 .

[15]  Christian Jost,et al.  About deterministic extinction in ratio-dependent predator-prey models , 1999 .

[16]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[17]  Shengqiang Liu,et al.  A Stage-structured Predator-prey Model of Beddington-DeAngelis Type , 2006, SIAM J. Appl. Math..

[18]  Huaiping Zhu,et al.  Bifurcation Analysis of a Predator-Prey System with Nonmonotonic Functional Response , 2003, SIAM J. Appl. Math..

[19]  Artem S Novozhilov,et al.  Population models with singular equilibrium. , 2006, Mathematical biosciences.

[20]  Matthijs Vos,et al.  Functional responses modified by predator density , 2009, Oecologia.

[21]  Xiao-Qiang Zhao,et al.  Dynamical systems in population biology , 2003 .

[22]  D. DeAngelis,et al.  Effects of spatial grouping on the functional response of predators. , 1999, Theoretical population biology.

[23]  On a kind of predator-prey system , 1989 .

[24]  Joydev Chattopadhyay,et al.  Ratio-dependent predator–prey model: effect of environmental fluctuation and stability , 2005 .

[25]  F. Hilker,et al.  Disease-induced stabilization of predator-prey oscillations. , 2008, Journal of theoretical biology.

[26]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[27]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.