A Bayesian model for highly accelerated phase‐contrast MRI

Phase‐contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real‐time application, and extensions to four‐dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase‐contrast magnetic resonance imaging.

[1]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[2]  R. Herfkens,et al.  Phase contrast cine magnetic resonance imaging. , 1991, Magnetic resonance quarterly.

[3]  M. Karlsson,et al.  Accuracy and reproducibility in phase contrast imaging using SENSE , 2003, Magnetic resonance in medicine.

[4]  M. Lustig,et al.  Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI , 2013, Journal of magnetic resonance imaging : JMRI.

[5]  Sundeep Rangan,et al.  Generalized approximate message passing for cosparse analysis compressive sensing , 2013, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  N J Pelc,et al.  Reconstructions of phase contrast, phased array multicoil data , 1994, Magnetic resonance in medicine.

[7]  Philip Schniter,et al.  Expectation-Maximization Gaussian-Mixture Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[8]  Peter Boesiger,et al.  Array compression for MRI with large coil arrays , 2007, Magnetic resonance in medicine.

[9]  Yu Ding,et al.  Shared velocity encoding: A method to improve the temporal resolution of phase‐contrast velocity measurements , 2012, Magnetic resonance in medicine.

[10]  S. Feuerbach,et al.  Quantification of left-to-right shunting in adult congenital heart disease: phase-contrast cine MRI compared with invasive oximetry. , 2009, The British journal of radiology.

[11]  Florent Krzakala,et al.  Variational free energies for compressed sensing , 2014, 2014 IEEE International Symposium on Information Theory.

[12]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[13]  D. O. Walsh,et al.  Adaptive reconstruction of phased array MR imagery , 2000, Magnetic resonance in medicine.

[14]  Peter Boesiger,et al.  Sparsity transform k‐t principal component analysis for accelerating cine three‐dimensional flow measurements , 2013, Magnetic resonance in medicine.

[15]  H. Wen,et al.  DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. , 1999, Journal of magnetic resonance.

[16]  Vahid Tarokh,et al.  Accelerated aortic flow assessment with compressed sensing with and without use of the sparsity of the complex difference image , 2013, Magnetic resonance in medicine.

[17]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[18]  Sebastian Schmitter,et al.  4D Flow MRI , 2018 .

[19]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[20]  Mehmet Akçakaya,et al.  Accelerated three‐dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction , 2014, NMR in biomedicine.

[21]  Patrick A Turski,et al.  Improved 3D phase contrast MRI with off‐resonance corrected dual echo VIPR , 2008, Magnetic resonance in medicine.

[22]  Li Ping,et al.  The Factor Graph Approach to Model-Based Signal Processing , 2007, Proceedings of the IEEE.

[23]  Philip Schniter,et al.  Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[24]  P. Camici,et al.  Relation between myocardial blood flow and the severity of coronary-artery stenosis. , 1994, The New England journal of medicine.

[25]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[26]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[27]  Philip Schniter,et al.  Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior , 2010, IEEE Transactions on Signal Processing.

[28]  B. Cowan,et al.  MRI phase contrast velocity and flow errors in turbulent stenotic jets , 2008, Journal of magnetic resonance imaging : JMRI.

[29]  Joshua N. Ash A unifying perspective of coherent and non-coherent change detection , 2014, Defense + Security Symposium.

[30]  C. Higgins,et al.  Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. , 1991, AJR. American journal of roentgenology.

[31]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[32]  Yu Ding,et al.  Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI , 2015, Magnetic resonance in medicine.

[33]  Volkan Cevher,et al.  Fixed Points of Generalized Approximate Message Passing With Arbitrary Matrices , 2016, IEEE Transactions on Information Theory.

[34]  Joshua N. Ash,et al.  Joint imaging and change detection for robust exploitation in interrupted SAR environments , 2013, Defense, Security, and Sensing.

[35]  Steffen Ringgaard,et al.  Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions , 2009, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[36]  M. Markl,et al.  Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance , 2011, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[37]  Mohamed Ali Mahjoub,et al.  Tutorial and Selected Approaches on Parameter Learning in Bayesian Network with Incomplete Data , 2012, ISNN.

[38]  Andreas Sigfridsson,et al.  Four‐dimensional flow MRI using spiral acquisition , 2012, Magnetic resonance in medicine.

[39]  Philip Schniter,et al.  Parameter-Free Sparsity Adaptive Compressive Recovery ( SCoRe ) , 2014 .

[40]  Cornelius Weiller,et al.  In vivo assessment of wall shear stress in the atherosclerotic aorta using flow‐sensitive 4D MRI , 2010, Magnetic resonance in medicine.

[41]  Li Feng,et al.  Accelerated phase‐contrast cine MRI using k‐t SPARSE‐SENSE , 2012, Magnetic resonance in medicine.

[42]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .