Seismic analysis of benchmark building installed with friction dampers

The 20-storey steel building has been declared as seismically excited benchmark building by structural control community to compare various control strategy, such as active, passive, semi-active and combination thereof. In this study, dynamic behaviour of the benchmark building installed with friction damper is investigated. For evaluation of structural responses, the seismic excitations considered are El Cento, Hachinohe, Northridge and Kobe. The friction damper with numerical rectangular ideal elasto-plastic hysteretic model is proposed to be used for the analysis. The effectiveness of friction dampers for reduction of responses namely, displacement, acceleration, base shear and performance criteria stipulated in the benchmark problem is investigated. Since, the activation of friction damper depends on slip force, a parametric study is also conducted to investigate the optimum slip force of the dampers, which yield the minimum responses. Further, optimal placement of dampers, rather than providing the dampers at all the floor levels is also studied, to minimise the cost of the dampers. Numerical study is also carried out by varying the slip force of dampers along the height of the benchmark building. Results show that for appropriate slip force and optimum location number, friction dampers installed in benchmark building can effectively reduce earthquake-induced responses.