The Martian Surface: Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust at Gusev crater and Meridiani Planum

Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.

[1]  E. A. Guinness,et al.  In-situ observations of the physical properties of the Martian surface , 2008 .

[2]  William H. Farrand,et al.  Visible and near-infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity , 2007 .

[3]  M. Dyar,et al.  Identifying the Phosphate and Ferric Sulfate Minerals in the Paso Robles Soils (Gusev Crater, Mars) Using an Integrated Spectral Approach , 2007 .

[4]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[5]  Dmitry Savransky,et al.  Chromaticity of the Martian sky as observed by the Mars Exploration Rover Pancam instruments , 2006 .

[6]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[7]  S. Ruff Spirit's Home Run: More Mineralogical Diversity as Observed by Mini-TES on the Traverse to and Arrival at Home Plate in the Columbia Hills of Gusev Crater, Mars , 2006 .

[8]  Raymond E. Arvidson,et al.  Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry , 2006 .

[9]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[10]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[11]  D. Ming,et al.  Nickel on Mars: Constraints on meteoritic material at the surface , 2006 .

[12]  A. Knoll,et al.  Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars , 2006 .

[13]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[14]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[15]  A. Knoll,et al.  Planetary science: Bedrock formation at Meridiani Planum , 2006, Nature.

[16]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[17]  B. Jolliff,et al.  Evidence for Water at Meridiani , 2006 .

[18]  Jeffrey R. Johnson,et al.  Origin of Rocks and Cobbles on the Meridiani Plains as Seen by Opportunity , 2006 .

[19]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[20]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[21]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[22]  Robin L. Fergason,et al.  Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES–derived thermal inertia , 2006 .

[23]  Nathalie A. Cabrol,et al.  Gusev crater: Wind‐related features and processes observed by the Mars Exploration Rover Spirit , 2006 .

[24]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[25]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[26]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[27]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[28]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[29]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[30]  K. Wohletz,et al.  Impact origin of sediments at the Opportunity landing site on Mars , 2005, Nature.

[31]  B. Hynek,et al.  A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars , 2005, Nature.

[32]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[33]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[34]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[35]  Mars Exploration Rover Geologic traverse by the Spirit rover in the Plains of Gusev Crater, Mars , 2005 .

[36]  A. F. C. Haldemann,et al.  Assessment of Mars Exploration Rover landing site predictions , 2005, Nature.

[37]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[38]  S. Squyres,et al.  Martian variable features: New insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit , 2005 .

[39]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[40]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[41]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[42]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[43]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[44]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[45]  Everett L. Shock,et al.  Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars , 2004 .

[46]  William M. Grundy,et al.  Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks , 2004 .

[47]  P H Smith,et al.  Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.

[48]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[49]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[50]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[51]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[52]  J F Bell,et al.  Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.

[53]  S. Erard,et al.  Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .

[54]  R. Greeley,et al.  Wind‐related features in Gusev crater, Mars , 2003 .

[55]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[56]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[57]  J. K. Crowley,et al.  Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes , 2003, Geochemistry: Exploration, Environment, Analysis.

[58]  Jeffrey R. Johnson,et al.  Low Abundance Materials at the Mars Pathfinder Landing Site: An Investigation Using Spectral Mixture Analysis and Related Techniques , 2002 .

[59]  A. Banin,et al.  Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: a potential tool for planetary surface exploration , 2002 .

[60]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[61]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[62]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[63]  Nicolas Thomas,et al.  Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data , 1999 .

[64]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[65]  Life, love and soil , 1998, Nature.

[66]  J. Bell,et al.  New composite reflectance spectra of Mars from 0.4 to 3.14 μm , 1994 .

[67]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[68]  J. Bell,et al.  Observational evidence of crystalline iron oxides on Mars , 1990 .

[69]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[70]  Raymond E. Arvidson,et al.  The Martian surface as imaged, sampled, and analyzed by the Viking landers , 1989 .

[71]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[72]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[73]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[74]  Michael C. Malin,et al.  Surface geology from Viking landers on Mars: A second look , 1984 .

[75]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[76]  D. Sherman,et al.  Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy , 1982 .

[77]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[78]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[79]  F. O. Huck,et al.  Calibration and performance of the Viking Lander cameras , 1977 .

[80]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[81]  Thomas A. Mutch,et al.  Geology of Mars , 1977 .

[82]  F. O. Huck,et al.  The Viking Mars lander camera , 1975 .

[83]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[84]  Lunar soil: should this term be used? , 1968, Science.

[85]  C. C. Nikiforoff Reappraisal of the Soil: Pedogenesis consists of transactions in matter and energy between the soil and its surroundings. , 1959, Science.

[86]  C. Wentworth A Scale of Grade and Class Terms for Clastic Sediments , 1922, The Journal of Geology.