Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice
暂无分享,去创建一个
[1] B. Duplantier. Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts andO(n) models , 1987 .
[2] M. Gaudin. Vers le spectre du triangle , 1987 .
[3] C. Itzykson,et al. Two-dimensional field theories close to criticality , 1987 .
[4] Saleur,et al. Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.
[5] Pfeuty,et al. Two-dimensional polymer melts. , 1987, Physical review letters.
[6] N. Balazs,et al. Spectral fluctuations and zeta functions , 1987 .
[7] Saleur. Magnetic properties of the two-dimensional n=0 vector model. , 1987, Physical review. B, Condensed matter.
[8] J. Zuber,et al. Modular invariance in non-minimal two-dimensional conformal theories , 1987 .
[9] B. Duplantier,et al. Exact critical properties of two-dimensional dense self-avoiding walks , 1987 .
[10] C. Itzykson,et al. Two-dimensional conformal invariant theories on a torus , 1986 .
[11] F. Wegner,et al. Calculation of anomalous dimensions for the nonlinear sigma model , 1986 .
[12] Saleur,et al. Exact surface and wedge exponents for polymers in two dimensions. , 1986, Physical review letters.
[13] B. Duplantier. Exact critical exponents for two-dimensional dense polymers , 1986 .
[14] J. Cardy. Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories , 1986 .
[15] H. Saleur. New exact exponents for two-dimensional self-avoiding walks , 1986 .
[16] Duplantier,et al. Polymer network of fixed topology: Renormalization, exact critical exponent gamma in two dimensions, and D=4- epsilon. , 1986, Physical review letters.
[17] Moungi G. Bawendi,et al. A lattice model for self‐avoiding polymers with controlled length distributions. II. Corrections to Flory–Huggins mean field , 1986 .
[18] J. Cardy,et al. Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. , 1986, Physical review letters.
[19] C. Itzykson,et al. An evaluation of the number of Hamiltonian paths , 1985 .
[20] V. Dotsenko,et al. Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models - Nucl. Phys. B240, 312 (1984) , 1984 .
[21] J. Nagle,et al. Towards better theories of polymer melting , 1984 .
[22] D. Klein,et al. Compact self-avoiding circuits on two-dimensional lattices , 1984 .
[23] M. Nijs. Extended scaling relations for the magnetic critical exponents of the Potts model , 1983 .
[24] Bernard Nienhuis,et al. Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .
[25] M. Goldstein,et al. On the validity of the Flory–Huggins approximation for semiflexible chains , 1981 .
[26] Eberhard R. Hilf,et al. Spectra of Finite Systems , 1980 .
[27] A. Malakis,et al. The graph-like state of matter. VII. The glass transition of polymers and Hamiltonian walks , 1976 .
[28] R. Baxter,et al. Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .
[29] A. Malakis. Hamiltonian walks and polymer configurations , 1976 .
[30] André Weil,et al. Elliptic Functions according to Eisenstein and Kronecker , 1976 .
[31] C. Domb. Phase transition in a polymer chain in dilute solution , 1974 .
[32] J. Nagle. Statistical mechanics of the melting transition in lattice models of polymers , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[33] R. Baxter. Potts model at the critical temperature , 1973 .
[34] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[35] M. N. Barber. Asymptotic results for self-avoiding walks on a Manhattan lattice , 1970 .
[36] C. Berge. Graphes et hypergraphes , 1970 .
[37] M. Fisher,et al. Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .
[38] G. Sposito,et al. Graph theory and theoretical physics , 1969 .
[39] M. Kac. Can One Hear the Shape of a Drum , 1966 .
[40] P. W. Kasteleyn. A soluble self-avoiding walk problem*) , 1963 .
[41] W. T. Tutte. The dissection of equilateral triangles into equilateral triangles , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.
[42] W. J. C. Orr,et al. Statistical treatment of polymer solutions at infinite dilution , 1947 .
[43] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .