Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice

[1]  B. Duplantier Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts andO(n) models , 1987 .

[2]  M. Gaudin Vers le spectre du triangle , 1987 .

[3]  C. Itzykson,et al.  Two-dimensional field theories close to criticality , 1987 .

[4]  Saleur,et al.  Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.

[5]  Pfeuty,et al.  Two-dimensional polymer melts. , 1987, Physical review letters.

[6]  N. Balazs,et al.  Spectral fluctuations and zeta functions , 1987 .

[7]  Saleur Magnetic properties of the two-dimensional n=0 vector model. , 1987, Physical review. B, Condensed matter.

[8]  J. Zuber,et al.  Modular invariance in non-minimal two-dimensional conformal theories , 1987 .

[9]  B. Duplantier,et al.  Exact critical properties of two-dimensional dense self-avoiding walks , 1987 .

[10]  C. Itzykson,et al.  Two-dimensional conformal invariant theories on a torus , 1986 .

[11]  F. Wegner,et al.  Calculation of anomalous dimensions for the nonlinear sigma model , 1986 .

[12]  Saleur,et al.  Exact surface and wedge exponents for polymers in two dimensions. , 1986, Physical review letters.

[13]  B. Duplantier Exact critical exponents for two-dimensional dense polymers , 1986 .

[14]  J. Cardy Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories , 1986 .

[15]  H. Saleur New exact exponents for two-dimensional self-avoiding walks , 1986 .

[16]  Duplantier,et al.  Polymer network of fixed topology: Renormalization, exact critical exponent gamma in two dimensions, and D=4- epsilon. , 1986, Physical review letters.

[17]  Moungi G. Bawendi,et al.  A lattice model for self‐avoiding polymers with controlled length distributions. II. Corrections to Flory–Huggins mean field , 1986 .

[18]  J. Cardy,et al.  Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. , 1986, Physical review letters.

[19]  C. Itzykson,et al.  An evaluation of the number of Hamiltonian paths , 1985 .

[20]  V. Dotsenko,et al.  Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models - Nucl. Phys. B240, 312 (1984) , 1984 .

[21]  J. Nagle,et al.  Towards better theories of polymer melting , 1984 .

[22]  D. Klein,et al.  Compact self-avoiding circuits on two-dimensional lattices , 1984 .

[23]  M. Nijs Extended scaling relations for the magnetic critical exponents of the Potts model , 1983 .

[24]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[25]  M. Goldstein,et al.  On the validity of the Flory–Huggins approximation for semiflexible chains , 1981 .

[26]  Eberhard R. Hilf,et al.  Spectra of Finite Systems , 1980 .

[27]  A. Malakis,et al.  The graph-like state of matter. VII. The glass transition of polymers and Hamiltonian walks , 1976 .

[28]  R. Baxter,et al.  Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .

[29]  A. Malakis Hamiltonian walks and polymer configurations , 1976 .

[30]  André Weil,et al.  Elliptic Functions according to Eisenstein and Kronecker , 1976 .

[31]  C. Domb Phase transition in a polymer chain in dilute solution , 1974 .

[32]  J. Nagle Statistical mechanics of the melting transition in lattice models of polymers , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  R. Baxter Potts model at the critical temperature , 1973 .

[34]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[35]  M. N. Barber Asymptotic results for self-avoiding walks on a Manhattan lattice , 1970 .

[36]  C. Berge Graphes et hypergraphes , 1970 .

[37]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[38]  G. Sposito,et al.  Graph theory and theoretical physics , 1969 .

[39]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[40]  P. W. Kasteleyn A soluble self-avoiding walk problem*) , 1963 .

[41]  W. T. Tutte The dissection of equilateral triangles into equilateral triangles , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  W. J. C. Orr,et al.  Statistical treatment of polymer solutions at infinite dilution , 1947 .

[43]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .