A proteogenomic approach to map the proteome of an unsequenced pathogen – Leishmania donovani

Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22322 unique peptides from a homology‐based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N‐terminally and one C‐terminally extended proteins based on the proteomic data search against the six‐frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.

[1]  Nandini A. Sahasrabuddhe,et al.  A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry. , 2011, Genome research.

[2]  Dhanashree S. Kelkar,et al.  Proteogenomic Analysis of Mycobacterium tuberculosis By High Resolution Mass Spectrometry* , 2011, Molecular & Cellular Proteomics.

[3]  Sven Nahnsen,et al.  Mass spectrometry at the interface of proteomics and genomics. , 2011, Molecular bioSystems.

[4]  C. Craik,et al.  The Oligopeptidase B of Leishmania Regulates Parasite Enolase and Immune Evasion* , 2010, The Journal of Biological Chemistry.

[5]  V. Bafna,et al.  Proteogenomics to discover the full coding content of genomes: a computational perspective. , 2010, Journal of proteomics.

[6]  Shyam Sundar,et al.  Proteome mapping of overexpressed membrane-enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovani. , 2010, British journal of clinical pharmacology.

[7]  R. Sommer,et al.  Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. , 2010, Genome research.

[8]  C. Shaha,et al.  Leishmania cell surface prohibitin: role in host–parasite interaction , 2010, Cellular microbiology.

[9]  T. Le Bihan,et al.  Gel free analysis of the proteome of intracellular Leishmania mexicana. , 2010, Molecular and biochemical parasitology.

[10]  Gustavo A. de Souza,et al.  MSMSpdbb: providing protein databases of closely related organisms to improve proteomic characterization of prokaryotic microbes , 2010, Bioinform..

[11]  H. Maltezou,et al.  Drug Resistance in Visceral Leishmaniasis , 2009, Journal of biomedicine & biotechnology.

[12]  A. Jackson The Evolution of Amastin Surface Glycoproteins in Trypanosomatid Parasites , 2009, Molecular biology and evolution.

[13]  Ashutosh Kumar,et al.  Characterization of dipeptidylcarboxypeptidase of Leishmania donovani: a molecular model for structure based design of antileishmanials , 2010, J. Comput. Aided Mol. Des..

[14]  J. Alvar,et al.  Developments in the treatment of visceral leishmaniasis , 2009, Expert opinion on emerging drugs.

[15]  A. Ivens,et al.  Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds , 2009, PLoS neglected tropical diseases.

[16]  Kimmen Sjölander,et al.  Berkeley PHOG: PhyloFacts orthology group prediction web server , 2009, Nucleic Acids Res..

[17]  F. Raymond,et al.  Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. , 2009, Molecular and biochemical parasitology.

[18]  J. Dujardin Structure, dynamics and function of Leishmania genome: resolving the puzzle of infection, genetics and evolution? , 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[19]  Damian Fermin,et al.  Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer. , 2009, Cancer research.

[20]  Samuel H. Payne,et al.  Discovery and revision of Arabidopsis genes by proteogenomics , 2008, Proceedings of the National Academy of Sciences.

[21]  V. Brinkmann,et al.  Transgenic, Fluorescent Leishmania mexicana Allow Direct Analysis of the Proteome of Intracellular Amastigotes*S , 2008, Molecular & Cellular Proteomics.

[22]  John R Yates,et al.  The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation , 2008, Genome Biology.

[23]  Daniel B. Goodman,et al.  Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. , 2008, Genome research.

[24]  Jacques Corbeil,et al.  Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species , 2008, BMC Genomics.

[25]  P. Zimmermann,et al.  Genome-Scale Proteomics Reveals Arabidopsis thaliana Gene Models and Proteome Dynamics , 2008, Science.

[26]  C. Shaha,et al.  Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence , 2008, Molecular microbiology.

[27]  E. Suzuki,et al.  Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. , 2008, Biochimica et biophysica acta.

[28]  S. K. Choudhuri,et al.  Inhibition of ABC Transporters Abolishes Antimony Resistance in Leishmania Infection , 2007, Antimicrobial Agents and Chemotherapy.

[29]  T. Holzer,et al.  Global gene expression in Leishmania. , 2007, International journal for parasitology.

[30]  Brian White,et al.  Comparative genomic analysis of three Leishmania species that cause diverse human disease , 2007, Nature Genetics.

[31]  J. Vermunt,et al.  Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes , 2007, PloS one.

[32]  P. Myler,et al.  Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. , 2007, Molecular and biochemical parasitology.

[33]  K. Leifso,et al.  Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. , 2007, Molecular and biochemical parasitology.

[34]  S. Sundar,et al.  Differential gene expression analysis in antimony-unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray , 2007, Parasitology.

[35]  A. Descoteaux,et al.  Leishmania donovani  lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane , 2006, Cellular microbiology.

[36]  M. Ouellette,et al.  A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum , 2006, Proteomics.

[37]  Damian Fermin,et al.  Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics , 2006, Genome Biology.

[38]  Timothy R Holzer,et al.  Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. , 2006, Molecular and biochemical parasitology.

[39]  S. Sundar,et al.  Visceral leishmaniasis (kala-azar): challenges ahead. , 2006, The Indian journal of medical research.

[40]  E. Koonin Orthologs, Paralogs, and Evolutionary Genomics 1 , 2005 .

[41]  Akhilesh Pandey,et al.  Genome annotation of Anopheles gambiae using mass spectrometry-derived data , 2005, BMC Genomics.

[42]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[43]  J. Donelson,et al.  Regulation of genes encoding the major surface protease of Leishmania chagasi via mRNA stability. , 2005, Molecular and biochemical parasitology.

[44]  M. Bergeron,et al.  Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp. , 2005, Molecular and biochemical parasitology.

[45]  Clare L. Bennett,et al.  A critical role for lipophosphoglycan in proinflammatory responses of dendritic cells to Leishmania mexicana , 2005, European journal of immunology.

[46]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[47]  E. Koonin Orthologs, paralogs, and evolutionary genomics. , 2005, Annual review of genetics.

[48]  Nichole L. King,et al.  Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry , 2004, Genome Biology.

[49]  J. Lukeš,et al.  Genetic polymorphism within the leishmania donovani complex: correlation with geographic origin. , 2004, The American journal of tropical medicine and hygiene.

[50]  Jacob D. Jaffe,et al.  Proteogenomic mapping as a complementary method to perform genome annotation , 2004, Proteomics.

[51]  R. Locksley,et al.  Leishmania major LACK Antigen Is Required for Efficient Vertebrate Parasitization , 2003, The Journal of experimental medicine.

[52]  J. Donelson,et al.  The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. , 2003, Molecular and biochemical parasitology.

[53]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[54]  A. Descoteaux,et al.  Functional aspects of the Leishmania donovani lipophosphoglycan during macrophage infection. , 2002, Microbes and infection.

[55]  W. Blackstock,et al.  Matching peptide mass spectra to EST and genomic DNA databases. , 2001, Trends in biotechnology.

[56]  P. Mortensen,et al.  Mass spectrometry allows direct identification of proteins in large genomes , 2001, Proteomics.

[57]  M. Mann,et al.  Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. , 2001, Trends in biochemical sciences.

[58]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[59]  R. Locksley,et al.  Susceptibility to infectious diseases: Leishmania as a paradigm. , 1999, The Journal of infectious diseases.

[60]  P. Wincker,et al.  Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. , 1998, Gene.

[61]  E. Schneider,et al.  ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. , 1998, FEMS microbiology reviews.

[62]  L. Gedamu,et al.  Molecular cloning, characterization and overexpression of two distinct cysteine protease cDNAs from Leishmania donovani chagasi. , 1997, Molecular and biochemical parasitology.

[63]  J. Yates,et al.  Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. , 1995, Analytical chemistry.