The Computation of π to 29,360,000 Decimal Digits Using Borweins’ Quartically Convergent Algorithm
暂无分享,去创建一个
[1] E. Grosswald. Topics from the theory of numbers , 1966 .
[2] E. Salamin,et al. Computation of π Using Arithmetic-Geometric Mean , 1976 .
[3] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[4] J. Borwein,et al. More quadratically converging algorithms for p , 1986 .
[5] Petr Beckmann,et al. A History of Pi , 1970 .
[6] Daniel Shanks,et al. Calculation of π to 100,000 Decimals , 1962 .
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[9] Richard P. Brent,et al. Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.
[10] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[11] Paul N. Swarztrauber,et al. FFT algorithms for vector computers , 1984, Parallel Comput..
[12] Jonathan M. Borwein,et al. The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions , 1984 .
[13] E. O. Brigham,et al. The Fast Fourier Transform , 1967, IEEE Transactions on Systems, Man, and Cybernetics.
[14] Allan Borodin,et al. The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.
[15] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.