The DNA-binding domain mediates both nuclear and cytosolic functions of p53

[1]  Yingang Feng,et al.  Anti-apoptosis proteins Mcl-1 and Bcl-xL have different p53-binding profiles. , 2013, Biochemistry.

[2]  Y. Muto,et al.  Dual-site Interactions of p53 Protein Transactivation Domain with Anti-apoptotic Bcl-2 Family Proteins Reveal a Highly Convergent Mechanism of Divergent p53 Pathways* , 2013, The Journal of Biological Chemistry.

[3]  Richard W. Kriwacki,et al.  PUMA Binding Induces Partial Unfolding within BCL-xL to Disrupt p53 Binding and Promote Apoptosis , 2012, Nature chemical biology.

[4]  J. Chipuk,et al.  Examining BCL-2 family function with large unilamellar vesicles. , 2012, Journal of visualized experiments : JoVE.

[5]  D. Green,et al.  A unified model of mammalian BCL-2 protein family interactions at the mitochondria. , 2011, Molecular cell.

[6]  Peter E Wright,et al.  Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. , 2010, Biochemistry.

[7]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[8]  Michael Nilges,et al.  An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. , 2010, Angewandte Chemie.

[9]  D. Green,et al.  The BCL-2 family reunion. , 2010, Molecular cell.

[10]  S. Chi,et al.  The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X(L)-binding motif. , 2009, Biochemistry.

[11]  C. Klein,et al.  BclxL Changes Conformation upon Binding to Wild-type but Not Mutant p53 DNA Binding Domain* , 2009, The Journal of Biological Chemistry.

[12]  D. Green,et al.  Cytoplasmic functions of the tumour suppressor p53 , 2009, Nature.

[13]  Susan Jones,et al.  ProtorP: a protein-protein interaction analysis server , 2009, Bioinform..

[14]  A. Fersht,et al.  Comparative Biophysical Characterization of p53 with the Pro-apoptotic BAK and the Anti-apoptotic BCL-xL* , 2007, Journal of Biological Chemistry.

[15]  Hao Wu,et al.  Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. , 2007, Journal of molecular biology.

[16]  Ying Wang,et al.  Structure of the human p53 core domain in the absence of DNA. , 2007, Acta crystallographica. Section D, Biological crystallography.

[17]  A. Joachimiak,et al.  Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. , 2006, Genes & development.

[18]  M. Kitayner,et al.  Structural basis of DNA recognition by p53 tetramers. , 2006, Molecular cell.

[19]  Toshiaki Hara,et al.  Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. , 2006, Molecular cell.

[20]  A. Giuliani,et al.  ProFace: a server for the analysis of the physicochemical features of protein-protein interfaces , 2006 .

[21]  H. Yoon,et al.  The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl. , 2006, Biochemical and biophysical research communications.

[22]  Ying Liu,et al.  Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Richter,et al.  Solution NMR Studies of an Intrinsically Unstructured Protein within a Dilute, 75 kDa Eukaryotic Protein Assembly; Probing the Practical Limits for Efficiently Assigning Polypeptide Backbone Resonances , 2005, Chembiochem : a European journal of chemical biology.

[24]  R. Kriwacki,et al.  Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils , 2005, Protein science : a publication of the Protein Society.

[25]  T. Kuwana,et al.  PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53 , 2005, Science.

[26]  S. Korsmeyer,et al.  An inhibitor of Bcl-2 family proteins induces regression of solid tumours , 2005, Nature.

[27]  A. Fersht,et al.  Cooperative binding of tetrameric p53 to DNA. , 2004, Journal of molecular biology.

[28]  Patrick Dumont,et al.  Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex , 2004, Nature Cell Biology.

[29]  A. Gunasekera,et al.  Defining the p53 DNA‐binding domain/Bcl‐xL‐binding interface using NMR , 2004, FEBS letters.

[30]  Martin Schuler,et al.  Direct Activation of Bax by p53 Mediates Mitochondrial Membrane Permeabilization and Apoptosis , 2004, Science.

[31]  A. Fersht,et al.  Crystal Structure of a Superstable Mutant of Human p53 Core Domain , 2004, Journal of Biological Chemistry.

[32]  P. Marrack,et al.  The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. , 2003, Immunity.

[33]  Dirk Walther,et al.  MolSurfer: a macromolecular interface navigator , 2003, Nucleic Acids Res..

[34]  S. Kato,et al.  Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Mason R. Mackey,et al.  Bid, Bax, and Lipids Cooperate to Form Supramolecular Openings in the Outer Mitochondrial Membrane , 2002, Cell.

[36]  Sarah A. Teichmann,et al.  Principles of protein-protein interactions , 2002, ECCB.

[37]  S. Hansen,et al.  Refolding and structural characterization of the human p53 tumor suppressor protein. , 2002, Biophysical chemistry.

[38]  D. Livingston,et al.  Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. , 2002, Genes & development.

[39]  S. Korsmeyer,et al.  BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. , 2001, Molecular cell.

[40]  Alberto Inga,et al.  Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants , 2001, Oncogene.

[41]  T. Halazonetis,et al.  P53 Binding Protein 1 (53bp1) Is an Early Participant in the Cellular Response to DNA Double-Strand Breaks , 2000, The Journal of cell biology.

[42]  A. Fersht,et al.  Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy , 2000, Oncogene.

[43]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[44]  A. Fersht,et al.  Thermodynamic stability of wild-type and mutant p53 core domain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[47]  R. Meadows,et al.  Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis , 1997, Science.

[48]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[49]  N. Pavletich,et al.  Structure of the p53 Tumor Suppressor Bound to the Ankyrin and SH3 Domains of 53BP2 , 1996, Science.

[50]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[51]  R. Meadows,et al.  X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death , 1996, Nature.

[52]  C. Arrowsmith,et al.  Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. , 1995, Biochemistry.

[53]  D. Thorley-Lawson,et al.  A novel form of Epstein-Barr virus latency in normal B cells in vivo , 1995, Cell.

[54]  John Calvin Reed,et al.  Tumor suppressor p53 is a direct transcriptional activator of the human bax gene , 1995, Cell.

[55]  R Montesano,et al.  Database of p53 gene somatic mutations in human tumors and cell lines. , 1994, Nucleic acids research.

[56]  J. E. Stenger,et al.  p53 domains: structure, oligomerization, and transformation , 1994, Molecular and cellular biology.

[57]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[58]  P. Howley,et al.  The transcriptional transactivation function of wild‐type p53 is inhibited by SV40 large T‐antigen and by HPV‐16 E6 oncoprotein. , 1992, The EMBO journal.

[59]  Thea D. Tlsty,et al.  Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53 , 1992, Cell.

[60]  A. Kimchi,et al.  Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6 , 1991, Nature.

[61]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[62]  R. Keller Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment , 2005 .

[63]  P. Güntert Automated NMR structure calculation with CYANA. , 2004, Methods in molecular biology.

[64]  A. Petros,et al.  Rationale for Bcl‐XL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies , 2000, Protein science : a publication of the Protein Society.

[65]  Ruggero Montesano,et al.  IARC p53 mutation database: A relational database to compile and analyze p53 mutations in human tumors and cell lines , 1999, Human mutation.