Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, point‐image size, and proportionality to retinal ganglion cell density

The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (MA) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between MA and polar angle. Despite individual variation in the shape of V1, the relationship between MA and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field. J. Comp. Neurol. 521:1001–1019, 2013. © 2012 Wiley Periodicals, Inc.

[1]  Eyal Seidemann,et al.  Uniform spatial spread of population activity in primate parafoveal V1. , 2012, Journal of neurophysiology.

[2]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[4]  E. L. Schwartz,et al.  Multi-area visuotopic map complexes in macaque striate and extra-striate cortex , 2006, Vision Research.

[5]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[6]  J S Pointer,et al.  THE CORTICAL MAGNIFICATION FACTOR AND PHOTOPIC VISION , 1986, Biological reviews of the Cambridge Philosophical Society.

[7]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[8]  A. Derrington,et al.  Long-range interactions in the lateral geniculate nucleus of the New-World monkey, Callithrix jacchus , 2001, Visual Neuroscience.

[9]  A. Goodchild,et al.  Segregation of receptive field properties in the lateral geniculate nucleus of a New-World monkey, the marmoset Callithrix jacchus. , 1998, Journal of neurophysiology.

[10]  Jonathan R. Polimeni,et al.  The V1-V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex , 2002, Neural Networks.

[11]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[12]  B. C. Motter,et al.  The roles of cortical image separation and size in active visual search performance. , 2007, Journal of vision.

[13]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[14]  Michael Breakspear,et al.  Modeling Magnification and Anisotropy in the Primate Foveal Confluence , 2010, PLoS Comput. Biol..

[15]  A. Derrington,et al.  Feedback from V 1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus , .

[16]  Ingo Schießl,et al.  Orientation selectivity in the common marmoset (Callithrix jacchus): The periodicity of orientation columns in V1 and V2 , 2006, NeuroImage.

[17]  N. McLoughlin,et al.  Four Projection Streams from Primate V1 to the Cytochrome Oxidase Stripes of V2 , 2009, The Journal of Neuroscience.

[18]  P. Saraiva,et al.  Relative sizes of cortical visual areas in marmosets: functional and phylogenetic implications , 2005, Experimental Brain Research.

[19]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[20]  S. A. Talbot,et al.  Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination , 1941 .

[21]  Paul R. Martin,et al.  Retinal ganglion cell inputs to the koniocellular pathway , 2008, The Journal of comparative neurology.

[22]  C. Galletti,et al.  Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex , 2009, The Journal of Neuroscience.

[23]  R Gattass,et al.  Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Mukund Balasubramaniana,et al.  The V 1 – V 2 – V 3 complex : quasiconformal dipole maps in primate striate and extrastriate cortex , 2002 .

[25]  Chris Tailby,et al.  Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset , 2011, The Journal of physiology.

[26]  Katsumi Aoki,et al.  Recent development of flow visualization , 2004, J. Vis..

[27]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[28]  Eric L. Schwartz,et al.  Computational Studies of the Spatial Architecture of Primate Visual Cortex , 1994 .

[29]  Paul R. Martin,et al.  Color signals in the primary visual cortex of marmosets. , 2008, Journal of vision.

[30]  Frederick Federer,et al.  Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. , 2009, Cerebral cortex.

[31]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[32]  Marcello G P Rosa,et al.  Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). , 2003, Brain research. Brain research protocols.

[33]  A. Angelucci,et al.  High-resolution mapping of anatomical connections in marmoset extrastriate cortex reveals a complete representation of the visual field bordering dorsal V2. , 2013, Cerebral cortex.

[34]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[35]  G. Blasdel,et al.  Functional Retinotopy of Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[36]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[37]  Geoffrey J. Goodhill,et al.  Topography and ocular dominance: a model exploring positive correlations , 1993, Biological Cybernetics.

[38]  A. Cowey,et al.  Preferential representation of the fovea in the primary visual cortex , 1993, Nature.

[39]  A. Thiele,et al.  Cholinergic modulation of response properties and orientation tuning of neurons in primary visual cortex of anaesthetized Marmoset monkeys , 2006, The European journal of neuroscience.

[40]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[41]  J T McIlwain,et al.  Reciprocity of receptive field images and point images in the superior colliculus of the cat , 1981, The Journal of comparative neurology.

[42]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[43]  Leo L. Lui,et al.  Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). , 2006, Cerebral cortex.

[44]  R. Gattass,et al.  A quantitative analysis of cytochrome oxidase-rich patches in the primary visual cortex of Cebus monkeys: topographic distribution and effects of late monocular enucleation , 1991, Experimental Brain Research.

[45]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[46]  A. Hendrickson,et al.  Foveal cone density shows a rapid postnatal maturation in the marmoset monkey , 2011, Visual Neuroscience.

[47]  W. B. Spatz The retino-geniculo-cortical pathway in callithrix I. Intraspecific variations in the lamination pattern of the lateral geniculate nucleus , 1978, Experimental Brain Research.

[48]  Leo L. Lui,et al.  Spatial summation, end inhibition and side inhibition in the middle temporal visual area (MT). , 2007, Journal of neurophysiology.

[49]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[50]  Barbara Sakitt,et al.  Why the cortical magnification factor in rhesus can not be isotropic , 1982, Vision Research.

[51]  David Troilo,et al.  Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus) , 1993, Vision Research.

[52]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[53]  Eyal Seidemann,et al.  The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1. , 2012, Journal of neurophysiology.

[54]  Hsin-Hao Yu,et al.  A simple method for creating wide-field visual stimulus for electrophysiology: mapping and analyzing receptive fields using a hemispheric display. , 2010, Journal of vision.

[55]  A. Cowey,et al.  The overrepresentation of the fovea and adjacent retina in the striate cortex and dorsal lateral geniculate nucleus of the macaque monkey , 1996, Neuroscience.

[56]  N. McLoughlin,et al.  A Continuous Smooth Map of Space in the Primary Visual Cortex of the Common Marmoset , 2005, Perception.

[57]  R Gattass,et al.  Visual topography of V1 in the Cebus monkey , 1987, The Journal of comparative neurology.

[58]  J. Rovamo,et al.  Isotropy of cortical magnification and topography of striate cortex , 1984, Vision Research.

[59]  S. K. Cheong,et al.  Linear and nonlinear contributions to the visual sensitivity of neurons in primate lateral geniculate nucleus. , 2010, Journal of neurophysiology.

[60]  A. Angelucci,et al.  High-Resolution Mapping of Anatomical Connections in Marmoset Extrastriate Cortex Reveals a Complete Representation of the Visual Field Bordering Dorsal V 2 , 2013 .

[61]  R. Gattass,et al.  Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex ofCebus monkeys , 1992, Experimental Brain Research.

[62]  Leo L. Lui,et al.  Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity , 2010, The European journal of neuroscience.

[63]  B. Boycott,et al.  Retinal ganglion cell density and cortical magnification factor in the primate , 1990, Vision Research.

[64]  Amanda Parker,et al.  Feedback from V1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus , 2002, Visual Neuroscience.

[65]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[66]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[67]  J. Rovamo,et al.  Visual resolution, contrast sensitivity, and the cortical magnification factor , 2004, Experimental Brain Research.

[68]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[69]  Leo L. Lui,et al.  Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus) , 2007, The European journal of neuroscience.

[70]  Barry B. Lee,et al.  Morphology and physiology of primate M- and P-cells. , 2004, Progress in brain research.

[71]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[72]  G. Elston,et al.  Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex , 2000, The Journal of Neuroscience.

[73]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  U. Grünert,et al.  Bipolar cell diversity in the primate retina: Morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus , 2001, The Journal of comparative neurology.

[75]  J. Kremers,et al.  Temporal properties of marmoset lateral geniculate cells , 1997, Vision Research.

[76]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[77]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[79]  M G Rosa,et al.  Retinotopic orgarnzation of the primary visual cortex of flying foxes (Pteropus poliocephalus and pteropus scapulatus) , 1993, The Journal of comparative neurology.

[80]  B. Finlay,et al.  Conservation of Absolute Foveal Area in New World Monkeys , 2000, Brain, Behavior and Evolution.

[81]  Marcello G P Rosa,et al.  Physiological responses of New World monkey V1 neurons to stimuli defined by coherent motion. , 2002, Cerebral cortex.

[82]  J R Wolff,et al.  Pre‐ and postnatal development of the primary visual cortex of the common marmoset. I. A changing space for synaptogenesis , 1993, The Journal of comparative neurology.

[83]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[84]  R. Vautin,et al.  Magnification factor and receptive field size in foveal striate cortex of the monkey , 2004, Experimental Brain Research.

[85]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[86]  Anna Wang Roe,et al.  Optical imaging of functional organization of V1 and V2 in marmoset visual cortex. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[87]  D. Hubel,et al.  Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  Paul R. Martin,et al.  Mosaic properties of midget and parasol ganglion cells in the marmoset retina , 2005, Visual Neuroscience.

[90]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[91]  Bb Lee,et al.  Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus) , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  M Imbert,et al.  Ocular dominance columns in the adult New World Monkey Callithrix jacchus , 2001, Visual Neuroscience.

[93]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[94]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[95]  W. B. Spatz,et al.  Transient molecular visualization of ocular dominance columns (ODCs) in normal adult marmosets despite the desegregated termination of the retino‐geniculo‐cortical pathways , 1998, The Journal of comparative neurology.

[96]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[97]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[98]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[99]  M. Pettet,et al.  Dynamic changes in receptive-field size in cat primary visual cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J M Allman,et al.  Magnification in striate cortex and retinal ganglion cell layer of owl monkey: a quantitative comparison , 1977, Science.

[101]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[102]  Joseph O'Rourke,et al.  Computational geometry column 35 , 1999, SIGA.

[103]  L. Garey,et al.  Postnatal development of quantitative morphological parameters in the lateral geniculate nucleus of the marmoset monkey. , 1986, Brain research.

[104]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[105]  W. B. Spatz Loss of ocular dominance columns with maturity in the monkey, Callithrix jacchus , 1989, Brain Research.

[106]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.