Estimation and testing for spatially indexed curves with application to ionospheric and magnetic field trends

We develop methodology for the estimation of the functional mean and the functional principal components when the functions form a spatial process. The data consist of curves $X(\mathbf{s}_k;t),t\in[0,T],$ observed at spatial locations $\mathbf{s}_1,\mathbf{s}_2,...,\mathbf{s}_N$. We propose several methods, and evaluate them by means of a simulation study. Next, we develop a significance test for the correlation of two such functional spatial fields. After validating the finite sample performance of this test by means of a simulation study, we apply it to determine if there is correlation between long-term trends in the so-called critical ionospheric frequency and decadal changes in the direction of the internal magnetic field of the Earth. The test provides conclusive evidence for correlation, thus solving a long-standing space physics conjecture. This conclusion is not apparent if the spatial dependence of the curves is neglected.

[1]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[2]  Claude Manté,et al.  Cokriging for spatial functional data , 2010, J. Multivar. Anal..

[3]  Piotr Kokoszka,et al.  Statistical significance testing for the association of magnetometer records at high-, mid- and low latitudes during substorm days , 2010 .

[4]  J. Mateu,et al.  Ordinary kriging for function-valued spatial data , 2011, Environmental and Ecological Statistics.

[5]  Jan Laštovička,et al.  Emerging pattern of global change in the upper atmosphere and ionosphere , 2008 .

[6]  P. Kokoszka,et al.  Removal of Nonconstant Daily Variation by Means of Wavelet and Functional Data Analysis , 2009 .

[7]  Larry G. Daniel,et al.  Statistical Significance Testing: A Historical Overview of Misuse and Misinterpretation with Implications for the Editorial Policies of Educational Journals , 1998 .

[8]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[9]  Yoshihiro Yamanishi,et al.  GEOGRAPHICALLY WEIGHTED FUNCTIONAL MULTIPLE REGRESSION ANALYSIS: A NUMERICAL INVESTIGATION(Functional Data Analysis) , 2003 .

[10]  Piotr Kokoszka,et al.  Testing for lack of dependence in the functional linear model , 2008 .

[11]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[12]  Robert L. Lysak,et al.  Introduction to Space Physics , 1995 .

[13]  P. Kokoszka,et al.  Consistency of the mean and the principal components of spatially distributed functional data , 2011, 1104.3074.

[14]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[15]  J. Laštovička Global pattern of trends in the upper atmosphere and ionosphere: Recent progress , 2009 .

[16]  M. Dolores Ugarte,et al.  Statistical Methods for Spatio-temporal Systems , 2006 .

[17]  Raymond G. Roble,et al.  How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere , 1989 .

[18]  I. Kneppo,et al.  Measuring and Testing , 1994 .

[19]  Chris Chatfield,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[20]  Liliane Bel,et al.  Spatio-temporal functional regression on paleoecological data , 2008 .

[21]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[22]  A. Mikhailov,et al.  An interpretation of the fo F 2 and hm F 2 long-term trends in the framework of the geomagnetic control concept , 2000 .

[23]  P. Kokoszka,et al.  Estimation of Sq variation by means of multiresolution and principal component analyses , 2009 .

[24]  Determining long‐term change in the ionosphere , 2003 .

[25]  H. Rishbeth,et al.  A greenhouse effect in the ionosphere , 1990 .

[26]  Arthur D. Richmond,et al.  Modelling the effects of changes in the Earth's magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters , 2008 .

[27]  Jorge Mateu,et al.  Statistics for spatial functional data: some recent contributions , 2009 .