Crystal structure of ammonia monohydrate phase II.

We have determined the crystal structure of ammonia monohydrate phase II (AMH II) employing a combination of ab initio computational structure prediction and structure solution from neutron powder diffraction data using direct space methods. Neutron powder diffraction data were collected from perdeuterated AMH II using the D2B high-resolution diffractometer at the Institut Laue-Langevin. AMH II crystallizes in space-group Pbca with 16 formula units in a unit-cell of dimensions a = 18.8285(4) A, b = 6.9415(2) A, c = 6.8449(2) A, and V = 894.61(3) A3 [rho(calc)(deuterated) = 1187.56(4) kg m(-3)] at 502 MPa, 180 K. The structure is characterized by sheets of tessellated pentagons formed by orientationally ordered O-D...O, O-D...N, and N-D...O hydrogen-bonds; these sheets are stacked along the a-axis and connected by N-D...O hydrogen bonds alone. With the exception of the simple body-centered-cubic high-pressure phases of ammonia monohydrate and ammonia dihydrate, this is the first complex molecular structure of any of the high-pressure stoichiometric ammonia hydrates to be determined. The powder structure solution is complemented by an ab initio structure prediction using density functional theory which gives an almost identical hydrogen bonding network.

[1]  Andrew Dominic Fortes,et al.  High pressure study of ammonia monohydrate from 0 - 3.0 GPa , 2011 .

[2]  R. J. Speedy Self-replicating structures in water , 1984 .

[3]  A. Hewat,et al.  The Super-D2B project at the ILL , 2001 .

[4]  H. Kanno,et al.  Existence of clathrate-like structures in supercooled water: X-ray diffraction evidence , 2008 .

[5]  W. G. Marshall,et al.  Phase behaviour and thermoelastic properties of perdeuterated ammonia hydrate and ice polymorphs from 0 to 2 GPa , 2009 .

[6]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[7]  V. Komarov,et al.  Structural Investigations of Argon Hydrates at Pressures up to 10 kbar , 2004 .

[8]  Structural aspects of the ice-water system , 1971 .

[9]  G. Consolmagno,et al.  THE AMMONIA-WATER SYSTEM AND THE CHEMICAL DIFFERENTIATION OF ICY SATELLITES , 1997 .

[10]  M. Mezei,et al.  Pentagon-pentagon correlations in water , 1985 .

[11]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[12]  R. Ludwig,et al.  Quantum cluster equilibrium theory of liquids: Freezing of QCE/3-21G water to tetrakaidecahedral ''Bucky-ice'' , 1999 .

[13]  C. Riekel,et al.  The crystal structure of deuteroammonia between 2 and 180 K by neutron powder profile refinement , 1979 .

[14]  W. G. Marshall,et al.  The high-pressure phase diagram of ammonia dihydrate , 2007 .

[15]  Olivier Grasset,et al.  The Cooling Rate of a Liquid Shell in Titan's Interior , 1996 .

[16]  W. Giauque,et al.  Ammonium Oxide and Ammonium Hydroxide. Heat Capacities and Thermodynamic Properties from 15 to 300°K.1 , 1953 .

[17]  Chris J Pickard,et al.  Highly compressed ammonia forms an ionic crystal. , 2008, Nature materials.

[18]  J. S. Lewis,et al.  Kinetic inhibition of CO and N2 reduction in the solar nebula , 1980 .

[19]  Daniel Gautier,et al.  An Evolutionary Turbulent Model of Saturn's Subnebula: Implications for the Origin of the Atmosphere of Titan , 2002 .

[20]  R. Prinn,et al.  Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition , 1981 .

[21]  B. M. Powell,et al.  Structure of the α-phase of solid methanol , 1989 .

[22]  Francois Raulin,et al.  Astrobiology and habitability of Titan , 2008 .

[23]  Peter Grindrod,et al.  Ammonium sulfate on Titan: Possible origin and role in cryovolcanism , 2007 .

[24]  O. Grasset,et al.  The ammonia–water system at high pressures: Implications for the methane of Titan , 2005 .

[25]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[26]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[27]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  J. Loveday,et al.  The ammonia hydrates—model mixed-hydrogen-bonded systems , 2004 .

[30]  V. Favre-Nicolin,et al.  FOX, `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction , 2002 .

[31]  Roberto Orosei,et al.  Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper , 2007 .

[32]  Rasmita Raval,et al.  A one-dimensional ice structure built from pentagons. , 2009, Nature materials.

[33]  A. Fortes Exobiological Implications of a Possible Ammonia–Water Ocean inside Titan , 2000 .

[34]  Jeffrey S. Kargel,et al.  Ammonia-water volcanism on icy satellites: Phase relations at 1 atmosphere , 1992 .

[35]  J. Loveday,et al.  AMMONIA MONOHYDRATE VI : A HYDROGEN-BONDED MOLECULAR ALLOY , 1999 .

[36]  Vincent Favre-Nicolin,et al.  A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction , 2004 .

[37]  Armel Le Bail,et al.  Whole powder pattern decomposition methods and applications: A retrospection , 2005, Powder Diffraction.

[38]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[39]  D. H. Templeton,et al.  The Crystal Structure of Ammonia Monohydrate , 1959 .

[40]  M. Guthrie,et al.  Observation of ammonia dihydrate in the AMH-VI structure at room temperature – possible implications for the outer solar system , 2009 .

[41]  E. L. Gromnitskaya,et al.  Ultrasonic study of the nonequilibrium pressure-temperature diagram of H 2 O ice , 2001 .